

Модуль дискретного вывода

RIO-D08

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ ПРМК.426436.035 РЭ

СОДЕРЖАНИЕ

1 ОПИСАНИЕ МОДУЛЯ	Стр
1.1 Назначение модуля	
1.2 Обозначение модуля при заказе и комплект поставки	
1.3 Технические характеристики модуля	
1.4 Средства измерения, инструмент и принадлежности	
1.5 Маркировка и упаковка	6
2 ФУНКЦИОНАЛЬНЫЕ ВОЗМОЖНОСТИ	6
З КОНСТРУКЦИЯ МОДУЛЯ И ПРИНЦИП РАБОТЫ .	7
3.1 Конструкция модуля	7
3.2 Назначение светодиодных индикаторов	7
3.3 Режимы работы модуля в сети	
3.4 Режимы работы модуля	
3.5 Принцип работы дискретных выходов	8
4 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ	9
4.1 Эксплуатационные ограничения при использовании моду	/ля9
4.2 Подготовка модуля к использованию	
4.3 Конфигурирование модуля дискретного вывода RIO-DO8	
4.4 Проверка модуля	12
5 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	13
5.1 Общие указания	13
5.2 Меры безопасности	13
6 ХРАНЕНИЕ И ТРАНСПОРТИРОВАНИЕ	14
6.1 Условия хранения модуля	
6.2 Условия транспортирования модуля	
7 ГАРАНТИИ ИЗГОТОВИТЕЛЯ	14
ПРИЛОЖЕНИЕ А - ГАБАРИТНЫЕ И ПРИСОЕДИНИ	ІТЕЛЬНЫЕ РАЗМЕРЫ 15
ПРИЛОЖЕНИЕ Б - ПОДКЛЮЧЕНИЕ МОДУЛЯ RIO-I СОЕДИНЕНИЙ	
Приложение Б.1 Схемы внешних соединений	
Приложение Б.2 Схема подключения интерфейса RS-485	
ПРИЛОЖЕНИЕ В - КОММУНИКАЦИОННЫЕ ФУНКL	IИИ 12
Приложение В.1 Общие сведения	
Приложение В.2 Программно доступные регистры RIO-DO8.	
Приложение В.3 MODBUS протокол	
Приложение В.4 Формат команд	
Приложение В.5 Рекомендации по программированию обме	
RIO-DO8	

Настоящее руководство по эксплуатации предназначено для ознакомления потребителей с назначением, моделями, принципом действия, устройством, монтажом, эксплуатацией и обслуживанием модуля дискретного вывода RIO-DO8.

ВНИМАНИЕ!

Перед использованием модуля, пожалуйста, ознакомьтесь с настоящим руководством по эксплуатации.

Пренебрежение мерами предосторожности и правилами эксплуатации может стать причиной травмирования персонала или повреждения оборудования!

В связи с постоянной работой по совершенствованию модуля, повышающей его надежность и улучшающей характеристики, в конструкцию могут быть внесены незначительные изменения, не отраженные в настоящем издании.

1 Описание модуля

1.1 Назначение модуля

- 1.1.1 Модуль дискретного вывода RIO-DO8 предназначен для формирования дискретных управляющих сигналов по командам управляющего компьютера (контроллера).
- 1.1.2 Модуль RIO-DO8 предназначен для построения распределенных систем контроля и управления технологическими объектами.
- 1.1.3 В модулях RIO-DO8 используется интеллектуальная система вывода, где каждый модуль имеет встроенный микропроцессор, выполняющий свои задачи и функции по обработке сигналов независимо от блока центрального процессора контроллера или компьютера.
- 1.1.4 Модуль RIO-DO8 выполнен как самостоятельное изделие, информационный обмен с которым осуществляется по интерфейсу RS-485 по протоколу MODBUS RTU, что позволяет использовать его в качестве удаленного устройства дискретного вывода при работе в современных сетях управления и сбора информации.

1.2 Обозначение модуля при заказе и комплект поставки

1.2.1 Модуль обозначается следующим образом:

RIO-DO8-X.

где:

Х - тип выходных дискретных сигналов:

Т – транзисторные выходы,

K — твердотельное реле,

Р – релейные выходы.

Примечание. При заказе модулей RIO нужно учитывать, что клеммы **РШЛ-5** и **РШП-5**, к которым подключается питание прибора и интерфейс, не входят в комплект поставки и их нужно заказывать отдельно (более детально о клеммах – см. прил. Б.1, рис. Б.2).

1.2.2 Комплект поставки модуля RIO-DO8 приведен в таблице 1.2.1.

Таблица 1.2.1 – Комплект поставки модуля RIO-DO8

Обозначение	Наименование	Количество	
ПРМК.426436.035	Модуль дискретного вывода RIO-DO8	1	
ПРМК.426436.035 ПС	Паспорт	1	
ПРМК.426436.035 РЭ	Руководство по эксплуатации	1*	
PC-4	Разъем сигнальный 4конт. РС-4	5	
РШД-5	Шинный разъем на DIN-рейку 5конт. РШД-5	1	
* - 1 экземпляр на любое количество модулей при поставке в один адрес			

1.3 Технические характеристики модуля

1.3.1 Дискретные выходы модуля RIO-DO8

Таблица 1.3.1 - Технические характеристики дискретных выходных сигналов

	Техническая характеристика	Значение	
К	оличество дискретных выходов	8	
	- <u>Транзистор:</u>		
	максимальное напряжение и ток коммутации	до 40 В, 100 мА постоянного тока	
	- <u>Твердотельное (не механическое) реле:</u>		
выхода	максимальное напряжение коммутации переменного (действующее значение) или постоянного тока	до 40 В	
Š	максимальный ток нагрузки каждого выхода	до 500 мА (АС) переменного тока,	
_		до 500 мА (DC) постоянного тока	
Тип	<u>- Реле (6 реле – замыкающих, 2 реле – переключающих)</u>	<u>):</u>	
•	максимальное напряжение коммутации переменного	до 220 В (переменный ток),	
	(действующее значение) или постоянного тока	от 5 В до 30 В (постоянный ток)	
	максимальный ток нагрузки каждого выхода	до 5 А (замыкающие реле),	
		до 8 А (переключающие реле)	
	Сигнал логического "0"	разомкнутое состояние контактов реле (транзисторного ключа).	
	Сигнал логической "1"	замкнутое состояние контактов реле (транзисторного ключа).	
Γί	альваническая развязка дискретных выходов	Выходы изолированы между собой, от питания и интерфейса, напряжение гальванической развязки не менее 500 В	

1.3.2 Электрические данные модуля RIO-DO8

Таблица 1.3.2 - Технические характеристики электропитания и потребление

Техническая характеристика	Значение
Напряжение питания	24 В (от 10 В до 36 В) постоянного тока
Потребляемый ток модуля RIO-DO8	Не более 130 мА

1.3.3 Последовательный интерфейс RS-485

Таблица 1.3.3 - Технические характеристики последовательного интерфейса RS-485

Техническая характеристика	Значение
Количество приборов	До 32 на одном сегменте
Максимальная длина линии в пределах	До 1200 метров
одного сегмента сети	
Диапазон сетевых адресов	255
Вид кабеля	Витая пара, экранированная витая пара
Протокол связи	Modbus режим RTU (Remote Terminal Unit)
Гальваническая развязка	Интерфейс гальванически изолирован от выходов и остальных цепей

1.3.4 Корпус. Условия эксплуатации модуля RIO-DO8

Таблица 1.3.4 - Условия эксплуатации

Техническая характеристика	Значение
Крепление модуля	Рельс DIN36x7,5 EN50022
Габаритные размеры (ВхШхГ):	117х23х129 мм
Монтажная глубина	130 мм
Рабочая температура	от минус 40 °C до 70 °C
Температура хранения	от минус 40 °C до 70 °C
Климатическое исполнение	УХЛ 4.2 по ГОСТ15150-69, относительная влажность от 30 до 80% без
	конденсации влаги (при температуре +35°C)
Атмосферное давление	от 84 до 106,7 кПа
Вибрация	с частотой до 60 Гц с амплитудой до 0,1 мм
Помещение	закрытое, взрыво-, пожаробезопасное
Положение при монтаже	Любое
Степень защиты	IP20 πο ΓΟCT 14254-96
Macca	< 0,18 кг

1.3.5 Среднее время наработки на отказ с учетом технического обслуживания, регламентированного руководством по эксплуатации, - не менее чем 100 000 часов.

- 1.3.6 Средний срок эксплуатации не менее 10 лет. Критерий допустимой границы эксплуатации экономическая нецелесообразность дальнейшей эксплуатации.
 - 1.3.7 Средний срок хранения 1 год в условиях по группе 1 ГОСТ 15150-69.
- 1.3.8 Изоляция электрических цепей RIO-DO8 относительно корпуса и между собой при температуре окружающей среды (20 ± 5) °C и относительной влажности воздуха до 80% выдерживает в течение 1 минуты действие испытательного напряжения практически синусоидальной формы частотой (50 ± 1) Гц с действующим значением 500 В.
- 1.3.9 Минимально допустимое электрическое сопротивление изоляции при температуре окружающей среды (20 ± 5) °C и относительной влажности воздуха до 80% составляет не менее 20 МОм.

1.4 Средства измерения, инструмент и принадлежности

Перечень принадлежностей, которые необходимы для контроля, регулирования, выполнения работ по техническому обслуживанию модуля, приведены в таблице 1.4 (согласно ДСТУ ГОСТ 2.610).

Таблица 1.4 - Перечень средств измерения, инструмента и принадлежностей, которые необходимы при обслуживании модуля RIO-DO8

Наименование средств измерения, инструмента и принадлежностей	Назначение
1 Вольтметр универсальный Щ300	Контроль напряжения питания
2 Мегаомметр Ф4108	Измерение сопротивления изоляции
3 Пинцет медицинский	Проверка качества монтажа
4 Отвёртка	Разборка корпуса
5 Мягкая бязь	Очистка от пыли и грязи

1.5 Маркировка и упаковка

- 1.5.1 Маркировка модуля выполнена согласно ГОСТ 26828 на табличке с размерами согласно ГОСТ 12971, которая крепится на боковую стенку корпуса модуля.
- 1.5.2 Пломбирование модуля предприятием-изготовителем при выпуске из производства не предусмотрено.
 - 1.5.3 Упаковка модуля соответствует требованиям ГОСТ 23170.
- 1.5.4 Модуль в соответствии с комплектом поставки упаковано согласно чертежам предприятияизготовителя.

2 Функциональные возможности

Выполняемые функции:

- Формирование выходных дискретных сигналов;
- Вывод дискретных сигналов с различным типом выхода (транзистор, твердотельное реле, логический сигнал);
 - Выдача по запросу состояния выходных сигналов;
- Установка выходов в заданное безопасное состояние при включении питания. Состояние выходных устройств после включения питания конфигурируется пользователем;
- Установка выходов в заданное безопасное состояние в аварийных ситуациях. Управление выходными устройствами при отказе интерфейсного канала связи (см. параметр «тайм-аут отсутствия обмена по сети интерфейсной связи») конфигурируется пользователем;
 - Возможность замены модуля без нарушения целостности системы питания и интерфейсной сети.
- Возможность использования модуля в качестве удаленного устройства дискретного вывода при работе в современных сетях управления и сбора информации.

3 Конструкция модуля и принцип работы

3.1 Конструкция модуля

Внешний вид и расположение разъемов модуля дискретного вывода RIO-DO8 показаны на рисунке 3.1.

На передней панели модуля размещены:

- Индикаторы режимов работы и состояния модуля,
- Индикаторы состояния дискретных выходов.

На корпусе модуля размещены пружинные разъем-клеммы для внешних соединений.

На задней панели модуля установлен специальный фиксирующий разъем на DIN-рейку, образующий с другими разъемами шину, которая позволяет быстро осуществить механический монтаж и демонтаж модулей.

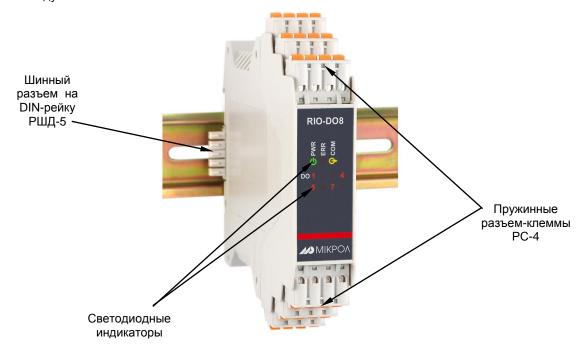


Рисунок 3.1 - Внешний вид модуля дискретного вывода RIO-DO8

3.2 Назначение светодиодных индикаторов

Для индикации состояния модуля на передней панели установлены три светодиода PWR, ERR, COM, которые индицируют разные режимы работы, наличие питания и наличие ошибок, а также светодиоды DO 1-8, которые отображают состояние дискретных выходов DO1-DO8.

Таблица 3.1 – Назначение светодиодных индикаторов

Индикатор	Индикатор	Цвет	Состояние светодиода	Состояние модуля
	Питание	Зеленый	Светится	Модуль в режиме работы с пользовательскими сетевыми настройками. Питание в норме
PWR	Работа		Не светится	Питание не подано или питание НЕ в норме
	(Power)		Мигает	Модуль в режиме конфигурации сетевых параметров
	Ошибка (Error)	Красный	Светится	Отсутствие связи. Модуль в безопасном режиме
ERR			Не светится	Работа модуля в рабочем режиме
			Мигает	Отсутствие связи. Модуль в рабочем режиме
СОМ	Интерфейс	. жептый	Не светится	Нет обмена по интерфейсу
COM	(Interface)		Мигает	Обмен данными по интерфейсу
	Состояние	Красный	Светится	Дискретный выход в замкнутом состоянии
[1][8]	дискретных выходов		Не светится	Дискретный выход в разомкнутом состоянии

3.3 Режимы работы модуля в сети

Модуль RIO-DO8 может функционировать или в режиме работы с пользовательскими сетевыми настройками или в режиме конфигурации сетевых параметров.

В режиме конфигурации сетевых параметров сетевой адрес прибора — 1, скорость обмена — 115200 бит/с. Для входа в режим конфигурации сетевых параметров необходимо установить перемычку JP1. В этом режиме пользователь может настроить сетевой адрес и скорость обмена, что необходимо при использовании более одного модуля в сети.

3.4 Режимы работы модуля

Модуль RIO-DO8 может работать в двух режимах работы – рабочем или безопасном.

В **рабочем** режиме модуль работает согласно указанным при конфигурировании настройкам, а по истечении таймаута запроса на передней панели начинает мигать светодиод ERR.

Для настройки нормального режима необходимо:

- в параметре "Режим работы модуля" выбрать "0001 нормальный режим",
- в параметре "Команда слежения за сетью" выбрать "0000 отключен",
- в параметре "Таймаут запроса" выставить необходимое значение таймаута.

Безопасный режим. Работает совместно с командой слежения за сетью. Если команда слежения за сетью включена, то по истечении таймаута запроса дискретные выходы перейдут в состояние, указанное в параметре "Безопасное положение дискретного выхода в случае обрыва связи" (см. табл. В.1), а светодиод ERR будет постоянно светиться.

Для настройки безопасного режима необходимо:

- в параметре "Команда слежения за сетью" выбрать "0001 включена с автоматическим возвратом из безопасного положения" или "0002 включена с возвратом из безопасного положения по сетевой команде",
 - в параметре "Таймаут запроса" выставить необходимое значение таймаута.

При выборе опции команды слежения за сетью "0001 – включена с автоматическим возвратом из безопасного положения" модуль будет автоматически возвращаться в нормальный режим работы после обращения к любому регистру с верхнего уровня.

При выборе опции команды слежения за сетью "0002 — включена с возвратом из безопасного положения по сетевой команде" модуль будет возвращаться в нормальный режим работы только после записи с верхнего уровня значения "1" в регистр 3 "Режим работы модуля", а дискретные выходы будут сохранять свое состояние до того момента, пока модуль не будет переведен обратно в нормальный режим работы.

Минимальное значение параметра "Таймаут запроса" определяется верхним уровнем.

За тайм-аут отсутствия обмена по сети интерфейсной связи отвечает системный сторожевой таймер, который позволяет исключить аварийные ситуации в случае, когда неисправность возникает у управляющего компьютера.

Реализация системного сторожевого таймера выглядит следующим образом. Управляющий компьютер периодически обменивается информацией с модулем. Если очередной обмен не происходит в определенный период времени, модуль считает, что компьютер отсутствует и переводит все свои выходы в безопасные состояния. Это защищает управляемое оборудование в аварийных ситуациях и делает всю систему более надежной и стабильной.

Таймаут запроса рекомендуется выбирать в зависимости от количества считываемых параметров в сети. Таймаут выбирается примерно в 2 раза больше от суммарного времени запросов, который посылает компьютер в сети.

3.5 Принцип работы дискретных выходов

К модулю RIO-DO8 аппаратно можно подключить восемь дискретных выходов.

В модуле можно настроить состояние дискретных выходов при включении питания (параметр "Состояние дискретных выходов при включении питания": 0000 — последнее состояние, 0001 — выход отключен, 0002 — выход включен).

Выходной сигнал дискретных выходов может быть статическим или импульсным (динамическим) с заданной длиной импульса. При статическом выходном сигнале логическое устройство формирует логическую единицу до того времени, пока регистр состояния дискретного выхода не будет изменен с верхнего уровня.

При импульсном выходном сигнале регистр состояния дискретного выхода будет сохранять логическую единицу на протяжении времени, указанном в регистре "Длительность импульса выходного устройства" (см. прил. В.1), после чего самостоятельно перейдет в состояние логического 0.

4 Использование по назначению

4.1 Эксплуатационные ограничения при использовании модуля

- 4.1.1 Место установки модуля RIO-DO8 должно отвечать следующим условиям:
- обеспечивать удобные условия для обслуживания и демонтажа;
- температура и относительная влажность окружающего воздуха должны соответствовать требованиям климатического исполнения модуля;
- окружающая среда не должна содержать токопроводящих примесей, а также примесей, которые вызывают коррозию деталей модуля;
- напряженность магнитных полей, вызванных внешними источниками переменного тока частотой 50 Гц или вызванных внешними источниками постоянного тока, не должна превышать 400 А/м;
 - параметры вибрации должны соответствовать исполнению 5 согласно ГОСТ 22261.
 - 4.1.2 При эксплуатации модуля необходимо исключить:
 - попадание токопроводящей пыли или жидкости на поверхность модуля;
 - наличие посторонних предметов вблизи модуля, ухудшающих его естественное охлаждение.
- 4.1.3 Во время эксплуатации необходимо следить за тем, чтобы подсоединенные к модулю провода не переламывались в местах контакта с клеммами и не имели повреждений изоляции.

4.2 Подготовка модуля к использованию

- 4.2.1 Освободите модуль от упаковки.
- 4.2.2 Перед началом монтажа модуля необходимо выполнить внешний осмотр. При этом обратить особенное внимание на чистоту поверхности, маркировки и отсутствие механических повреждений.
 - 4.2.3 Установите модуль на DIN-рельс согласно рисунку 4.1:
 - 1 установите верхнюю часть модуля на рельс;

Рисунок 4.1 – Схема крепления модуля на DIN-рельсе

- 4.2.4 **ВНИМАНИЕ!!!** При подключении модуля RIO-DO8 соблюдать указания мер безопасности раздела 6.2 настоящей инструкции.
- 4.2.5 Кабельные связи, соединяющие модуль RIO-DO8, подключаются через клеммы соединительных разъемов в соответствии с требованиями действующих "Правил устройства электроустановок".
- 4.2.6 Подключение входов-выходов к модулю RIO-DO8 производят в соответствии со схемами внешних соединений, приведенных в приложении Б.
- 4.2.7 При подключении линий связи к входным и выходным клеммам принимайте меры по уменьшению влияния наведенных шумов: *используйте* входные и (или) выходные шумоподавляющие фильтры (в т.ч. сетевые), шумоподавляющие фильтры для периферийных устройств.
- 4.2.8 Не допускается объединять в одном кабеле (жгуте) цепи, по которым передаются аналоговые, интерфейсные сигналы и сильноточные сигнальные или сильноточные силовые цепи. Для уменьшения наведенного шума отделите линии высокого напряжения или линии, проводящие значительные токи, от других линий, а также избегайте параллельного или общего подключения с линиями питания при подключении к выводам.
- 4.2.9 Необходимость экранирования кабелей, по которым передается информация, зависит от длины кабельных связей и от уровня помех в зоне прокладки кабеля. Рекомендуется использовать изолирующие трубки, каналы, лотки или экранированные линии.

4.3 Конфигурирование модуля дискретного вывода RIO-DO8

Модуль дискретного вывода RIO-DO8 конфигурируется через гальванически разделенный интерфейс RS-485 (протокол ModBus).

Конфигурирование модуля осуществляется с помощью программного пакета МИК-Конфигуратор.

Параметры конфигурации модуля RIO-DO8 сохраняются в энергонезависимой памяти.

Модуль дискретного вывода RIO-DO8 конфигурируется в следующей последовательности:

Примечание. Модуль RIO-DO8 поставляется заказчику с установленной перемычкой JP1 (режим конфигурации сетевых параметров, более подробно см. п.3.3).

- 4.3.1 Подключить модуль RIO-DO8 по интерфейсу RS-485 (разъем X7) через блок преобразования сигналов интерфейсов БПІ-52 (RS-485 \leftrightarrow USB) или БПІ-485 (RS-485 \leftrightarrow RS-232C) к компьютеру. Рекомендуемая схема подключения интерфейса показана на рисунке Б.2.
- 4.3.2 Подать питание на модуль дискретного вывода RIO-DO8. При этом должен засветиться индикатор PWR.

4.3.3 Запуск МИК-Конфигуратора

Запуск конфигуратора **MIC-Configurator** выполняется выбором из меню "Пуск" соответствующего ярлыка (Пуск ▶ Программы ▶ Microl ▶ Mic-Configurator ▶ MIC-Configurator). Окно программы приведено на рис. 4.2.

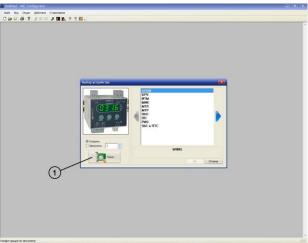


Рисунок 4.2 – Окно запуска MIC-Configurator

4.3.4 Поиск модуля в сети

Для поиска модуля необходимо нажать кнопку «Поиск» (1), после чего на экране отобразится диалоговое окно «Доступные устройства». В данном меню осуществляется поиск приборов, подключенных к выбранному СОМ порту и работающих на указанной скорости обмена. Для поиска необходимо нажать кнопку «Поиск» (2), после чего в информационном окне будут выведены доступные устройства (см. рис 4.3). Далее необходимо или двойным кликом мыши по найденному устройству, или нажав клавишу "Редактировать" (3), подтвердить (4) и считать параметры модуля (5).

Примечание. Если модуль не найден в сети, то необходимо проверить правильность подключения интерфейса.

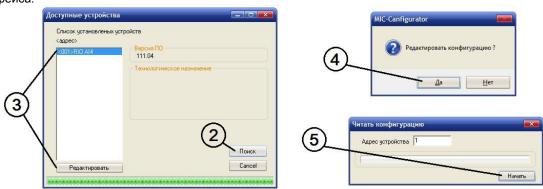


Рисунок 4.3 - Поиск доступных устройств и считывание параметров модуля

4.3.5 Редактирование конфигурации

Для редактирования сетевых параметров и режимов работы модуля в окне 1 необходимо выбрать один из соответствующих блоков ("Блок сетевого обмена", "Режимы модуля"), после чего в окне 3 откроются необходимые параметры.

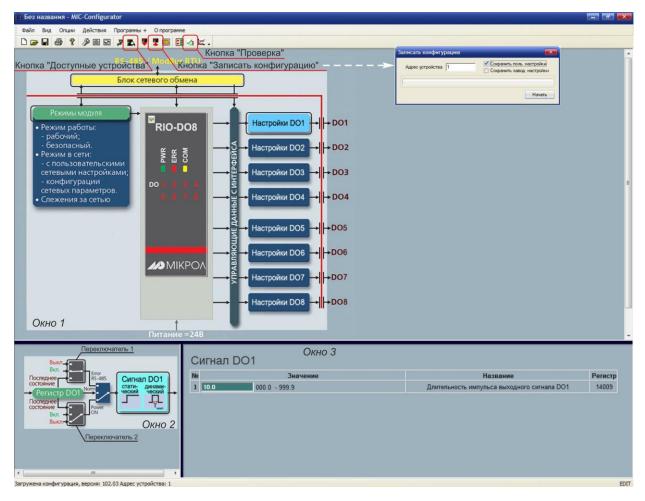


Рисунок 4.4 – Редактирование конфигурации

В данных блоках конфигурируются:

- 1. Режимы работы модуля (блок "Режимы модуля"):
 - Режим работы модуля;
 - Команда слежения за сетью;
 - Тайм-аут отсутствия обмена по сети.
- 2. Сетевые настройки (блок "Блок сетевого обмена"):
 - Сетевой адрес;
 - Скорость обмена;
 - Контроль четности;
 - Стоп бит.

Для редактирования параметров дискретных выходов модуля в окне 1 необходимо выбрать один из блоков ("Настройки DO1"÷"Настройки DO8"), после чего в окне 2 откроются необходимые параметры:

- Безопасное положение DO в случае обрыва связи (Переключатель 1);
- Состояние DO при подаче питания (Переключатель 2);
- Длительность импульса выходного устройства DO (для изменения данного параметра необходимо выбрать блок "Сигнал DO" в окне 2, после чего в окне 3 откроется поле для ввода необходимого значения).

Примечание. После завершения внесений изменений в настройки необходимо записать и сохранить конфигурацию модуля (нажать кнопку "Записать конфигурацию", и в открывшемся окне установить галочку "Сохранить пользовательские настройки"), иначе после отключения питания настройки модуля останутся прежними без изменения.

4.3.6 Изменение сетевых настроек модуля

Модуль RIO-DO8 поставляется заказчику с сетевыми настройками по умолчанию (таблица 4.3.6). Если в сети предусматривается одновременная работа нескольких модулей, то каждому из них необходимо присвоить свой адрес.

Таблица 4.3.6 – Настройки по умолчанию интерфейса RS-485 модуля RIO-DO8

Наименование параметра	Значение
Сетевой адрес (номер модуля в сети)	1
Скорость обмена	9 – 115200 бит/с
Контроль четности	0 – без контроля четности
Стоп бит	0 – 1 стоп бит

Изменение сетевых настроек модуля происходит только в режиме конфигурации сетевых параметров следующим образом:

- 4.3.6.1 Обесточить модуль, снять с шины и установить перемычку JP1 (рис. 4.5), после чего установить модуль обратно на шину. Модуль перейдет в режим конфигурации сетевых настроек, о чем будет свидетельствовать мигание светодиода "PWR" на передней панели прибора.
 - 4.3.6.2 В окне редактирования параметров нажать кнопку "Блок сетевого обмена" (см. рис. 4.3).
 - 4.3.6.3 После этого откроются сетевые параметры модуля.
- 4.3.6.4 Произвести необходимые изменения в настройках, после чего записать и сохранить конфигурацию модуля (нажать кнопку "Записать конфигурацию", и в открывшемся окне установить галочку "Сохранить пользовательские настройки").
- 4.3.6.5 Обесточить модуль, снять с шины и разомкнуть перемычку JP1, после чего установить прибор обратно на шину.
- 4.3.6.6 В МИК-Конфигураторе нажать кнопку "Доступные устройства" и произвести поиск модуля согласно пункту 4.3.4.
 - 4.3.6.7 Модуль должен определиться в сети с новыми сетевыми настройками.

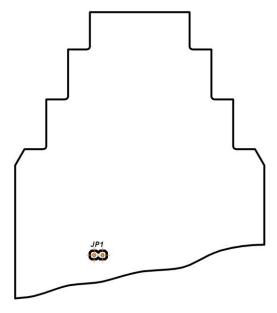


Рисунок 4.5 – Положение перемычки ЈР1 на плате модуля (корпус модуля снят)

4.4 Проверка модуля

Для проверки модуля на панели инструментов нажмите кнопку вызова окна проверки (см. рис. 4.6).

- 4.4.1 Нажмите кнопку "OFFLine" для перехода в онлайн-режим мониторинга состояния дискретных выходов (надпись при этом изменится на "ONLine").
- 4.4.2 Нажимая кнопки "Вкл." и "Откл.", проверьте состояние соответствующих дискретных выходов на передней панели модуля состояние должно меняться в соответствии с выбранной логикой работы.

Рисунок 4.5 - Проверка модуля

5 Техническое обслуживание

5.1 Общие указания

Техническое обслуживание заключается в проведении работ по контролю технического состояния и последующему устранению недостатков, выявленных в процессе контроля; профилактическому обслуживанию, выполняемому с установленной периодичностью, длительностью и в определенном порядке; устранению отказов, выполнение которых возможно силами персонала, выполняющего техническое обслуживание.

5.2 Меры безопасности

Пренебрежение мерами предосторожности и правилами эксплуатации может стать причиной травмирования персонала или повреждения оборудования!

Для обеспечения безопасного использования оборудования неукоснительно выполняйте указания данной главы!

- 5.2.1 Видом опасности при работе с RIO-DO8 есть поражающее действие электрического тока. Источником опасности есть токоведущие части, которые находятся под напряжением.
- 5.2.2 К эксплуатации модуля допускаются лица, имеющие разрешение для работы в электроустановках напряжением до 1000 В и изучившие руководство по эксплуатации в полном объеме.
- 5.2.3 Эксплуатация модуля разрешается при наличии инструкции по технике безопасности, утвержденной предприятием-потребителем в установленном порядке и учитывающей специфику применения модуля на конкретном объекте. При монтаже, наладке и эксплуатации необходимо руководствоваться ДНАОП 0.00-1.21 раздел 2, 4.
- 5.2.4 Все монтажные и профилактические работы должны проводиться при отключенном электропитании.
- 5.2.5 При разборке модуля для устранения неисправностей прибор должен быть отключен от сети электропитания.

6 Хранение и транспортирование

6.1 Условия хранения модуля

- 6.1.1 Срок хранения в потребительской таре не больше 1 года.
- 6.1.2 Модуль должен храниться в сухом и вентилируемом помещении при температуре окружающего воздуха от минус $40~^{\circ}$ С до плюс $70~^{\circ}$ С и относительной влажности от 30~до 80~% (без конденсации влаги). Данные требования являются рекомендуемыми.
- 6.1.3 Воздух в помещении не должен содержать пыли и примеси агрессивных паров и газов, вызывающих коррозию (в частности: газов, содержащих сернистые соединения или аммиак).
- 6.1.4 В процессе хранения или эксплуатации не кладите тяжелые предметы на прибор и не подвергайте его никакому механическому воздействию, так как устройство может деформироваться и повредиться.

6.2 Условия транспортирования модуля


- 6.2.1 Транспортирование модуля в упаковке предприятия-изготовителя осуществляется всеми видами транспорта в крытых транспортных средствах. Транспортирование самолетами должна выполняться только в отапливаемых герметизированных отсеках.
- 6.2.2 Модуль должен транспортироваться в климатических условиях, которые соответствуют условиям хранения 5 согласно ГОСТ 15150, но при давлении не ниже 35,6 кПа и температуре не ниже минус 40 °C или в условиях 3 при морских перевозках.
- 6.2.3 Во время погрузо-разгрузочных работ и транспортировании запакованный прибор не должен подвергаться резким ударам и влиянию атмосферных осадков. Способ размещения на транспортном средстве должен исключать перемещение модуля.
- 6.2.4 Перед распаковыванием после транспортирования при отрицательной температуре модуль необходимо выдержать в течение 3 часов в условиях хранения 1 согласно ГОСТ 15150.

7 Гарантии изготовителя

- 7.1 Производитель гарантирует соответствие модуля техническим условиям ТУ У 33.2-13647695-028:2013. При не соблюдении потребителем требований условий транспортирования, хранения, монтажа, наладки и эксплуатации, указанных в настоящем руководстве, потребитель лишается права на гарантию.
- 7.2 Гарантийный срок эксплуатации 5 лет со дня отгрузки модуля. Гарантийный срок эксплуатации модулей, которые поставляются на экспорт 18 месяцев со дня проследования их через государственную границу Украины.
- 7.3 По договоренности с потребителем предприятие-изготовитель осуществляет послегарантийное техническое обслуживание, техническую поддержку и технические консультации по всем видам своей продукции.

ПРИЛОЖЕНИЯ

Приложение A - Габаритные и присоединительные размеры

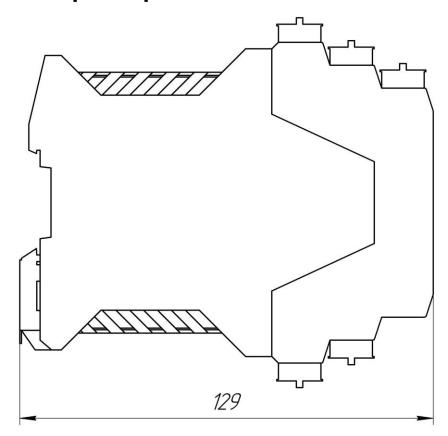


Рисунок А.1 - Габаритные размеры RIO-DO8

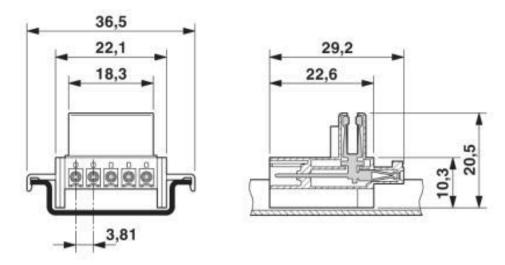


Рисунок А.2 - Габаритные размеры разъема питания РШД-5

Приложение Б - Подключение модуля RIO-DO8. Схемы внешних соединений

Приложение Б.1 Схемы внешних соединений

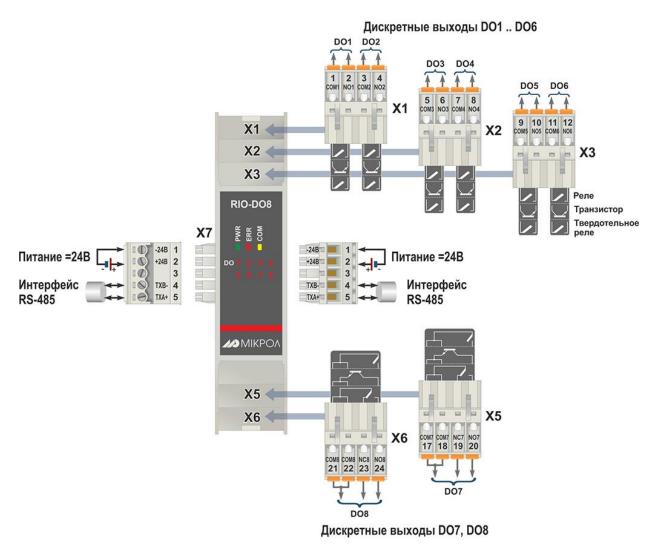


Рисунок Б.1 – Нумерация клемм и сигналы модуля дискретного вывода

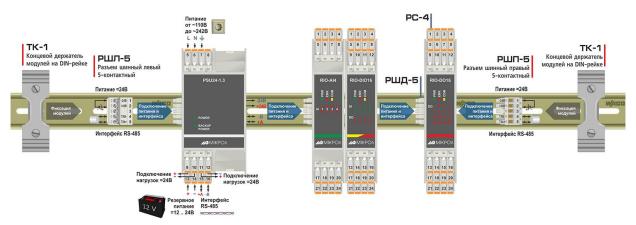


Рисунок Б.2 - Схема внешних соединений RIO-DO8 с блоком питания и другими модулями

Примечания

- 1. Разъемы РС-4 и РШД-5 из комплекта поставки модуля RIO или PSU.
- 2. Разъемы РШЛ-5, РШП-5 и ТК-1 являются аксессуарами, то есть не входят в комплект поставки и их нужно заказывать отдельно.
 - 3. Также необходимо учитывать что:
- если один или несколько модулей RIO будут использоваться на одной шине с блоком питания PSU24-1.3, то разъемы РШЛ-5 и РШП-5 можно не использовать, поскольку в этом случае питание модулей RIO идет через шину, а интерфейс можно подключать через клеммы блока питания PSU24-1.3;
- если несколько модулей RIO будут использоваться на одной шине, но питаться не от PSU24-1.3, то достаточно заказать один шинный разъем РШЛ-5 или РШП-5, через который будет подключаться питание и интерфейс для всех модулей;
- если заказываются несколько модулей, но все они будут использоваться в разных местах (не на одной шине), то для каждого модуля RIO нужно заказывать отдельный шинный разъем РШЛ-5 или РШП-5.

Приложение Б.2 Схема подключения интерфейса RS-485

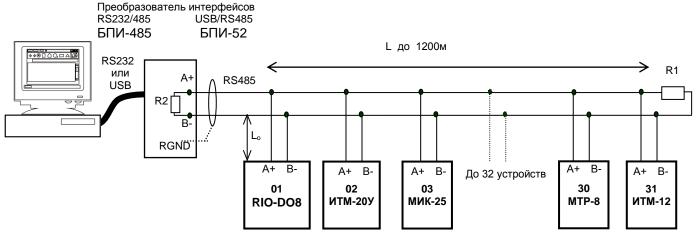


Рисунок Б.4 - Организация интерфейсной связи между ПК и устройствами

- 1. К ПК может быть подключено до 32 устройств, включая преобразователь интерфейсов БПИ-485 или БПИ-52.
 - 2. Общая длина кабельной линии связи не должна превышать 1200 м.
 - 3. В качестве кабельной линии связи предпочтительно использовать экранированную витую пару.
 - 4. Длина ответвлений L_о должна быть как можно меньшей.
- 5. К интерфейсным входам приборов, расположеным в крайних точках соединительной линии, необходимо подключить два терминальным резистора сопротивлением 120 Ом (R1 и R2). Подключение резисторов к контролерам №№ 01 30 не требуется. Подключение терминальных резисторов в блоке преобразования интерфейсов БПИ-485 или БПИ-52 см. в РЭ на БПИ-485 или БПИ-52. Схема подключения интерфейса RS-485 к модулю RIO-DO8 изображена на рисунке Б.1 (клемма X7).
- 6. Все ответвители приемо-передатчиков, присоединенные к одной общей передающей линии, должны согласовываться только в двух *крайних* точках. Длина ответвлений должна быть как можно меньшей.
- 7. Необходимость экранирования кабелей, по которым передается информация, зависит от длины кабельных связей и от уровня помех в зоне прокладки кабеля.
- 8. Применение экранированной витой пары в промышленных условиях является предпочтительным, поскольку это обеспечивает получение высокого соотношения сигнал/шум и защиту от синфазной помехи.

Приложение В - Коммуникационные функции

Приложение В.1 Общие сведения

Интерфейс предназначен для конфигурирования модуля, для использования в качестве удаленного устройства при работе в современных сетях управления и сбора информации (приема-передачи команд и данных), SCADA системах и т.п.

Протоколом связи по интерфейсу RS-485 является протокол Modbus режим RTU (Remote Terminal Unit) в режиме "No Group Write" – стандартный протокол без поддержки группового управления дискретными сигналами.

Для работы необходимо настроить коммуникационные характеристики модуля RIO-DO8 таким образом, чтобы они совпадали с настройками обмена данными ПК. Характеристики сетевого обмена настраиваются регистрами 18500 и 18501.

При обмене по интерфейсному каналу связи, если происходит передача данных от модуля в сеть, на модуле RIO-DO8 мигает индикатор **COM**.

Программно доступные регистры модуля RIO-DO8 приведены в таблице В.1.

Количество запрашиваемых регистров не должно превышать 16. Если в кадре запроса заказано более 16 регистров, модуль RIO-DO8 в ответе ограничивает их количество до первых 16-ти регистров.

Приложение В.2 Программно доступные регистры RIO-DO8

Таблица В.1 – Программно доступные регистры модуля RIO-DO8

Функцио- нальный код операции	Адрес регистра, DEC	Формат данных	Наименование параметра [Параметр уровня конфигурации]	Диапазон изменения (десятичные значения)
03	0	INT	Код (модель) модуля	870 (DEC) - 366 (HEX) - 3.102 (DEC)
03	1	INT	Версия программного обеспечения	3
03 / 06	2	INT	Разрешение программирования	0 — запрещено 1 — разрешено
03 / 06	3	INT	Режим работы модуля	0 – безопасный режим, 1 – нормальный режим
03 / 06	4	INT	Режим работы сети	0 – с настройками по умолчанию 1 – с пользовательскими настройками
03 / 06	5	INT	Команда слежения за сетью	0 – отключена 1 – включена с автоматическим возвратом из безопасного положения 2 – включена с возвратом из безопасного положения по сетевой команде
03 / 06	600-607	BYTE	Регистры состояния дискретных выходов DO1- DO8	0 – отключен 1 – включен
03 / 06	14009	INT	Длительность импульса дискретного выхода DO1*	000.0-999.9 c
03 / 06	14010	INT	Безопасное положение дискретного выхода DO1 в случае обрыва связи	0 – последнее положение 1 – отключен 2 – включен
03 / 06	14011	INT	Состояние дискретного выхода DO1 при подаче питания	0 – последнее положение 1 – отключен 2 – включен
03 / 06	1402914031	INT	Параметры настройки дискретного выхода DO2 (идентичны с параметрами выхода DO1)	
03 / 06	1404914051	INT	Параметры настройки дискретного выхода DO3 (идентичны с параметрами выхода DO1)	
03 / 06	1406914071	INT	Параметры настройки дискретного выхода DO4 (идентичны с параметрами выхода DO1)	
03 / 06	1408914091	INT	Параметры настройки дискретного выхода DO5 (идентичны с параметрами выхода DO1)	
03 / 06	1410914111	INT	Параметры настройки дискретного выхода DO6 (идентичны с параметрами выхода DO1)	
03 / 06	1412914131	INT	Параметры настройки дискретного выхода DO7 (идентичны с параметрами выхода DO1)	
03 / 06	1414914151	INT	Параметры настройки дискретного выхода DO8 (идентичны с параметрами выхода DO1)	

Продолжение таблицы В.1 – Программно	доступные регистры модуля RIO-DO8
--------------------------------------	-----------------------------------

03 / 06	18500	INT	Сетевой адрес (номер модуля в сети)	0-255
03 / 06	18501	INT	Скорость обмена	0000 - 2400 0001 - 4800 0002 - 9600 0003 - 14400 0004 - 19200 0005 - 28800 0006 - 38400 0007 - 57600 0008 - 76800 0009 - 115200 0010 - 230400 0011 - 460800 0012 - 921600
03 / 06	18502	INT	Контроль четности	0 – без контроля четности 1 – контроль по четности 2 – контроль по нечетности
03 / 06	18503	INT	Стоп бит	0 – один бит 1 – два бита
03 / 06	18505	INT	Таймаут запроса	0-9999 c
03 / 06	40600	INT	Сохранение пользовательских параметров	0 1 – сохранить

^{*} В регистр вводится целое число без запятой, например, 100, что будет отвечать 10 секундам

Приложение B.3 MODBUS протокол

В.3.1 Формат каждого байта, который принимается и передается приборами, следующий:

1 start bit, 8 data bits, 1 Stop Bit (No Parity Bit) LSB (Least Significant bit) младший бит передается первым.

Кадр Modbus сообщения следующий:

DEVICE ADDRESS FUNCTION CODE		DATA	CRC CHECK
8 BITS	8 BITS	k x 8 BITS	16 BITS

Где k≤16 – количество запрашиваемых регистров. Если в кадре запроса заказано более 16 регистров, то это указывает на ошибочный запрос (код ошибки 2).

B.3.2 Device Address. Адрес устройства

Адрес модуля (slave-устройства) в сети (1-255), по которому обращается SCADA система (masterустройство) со своим запросом. Когда удаленный прибор посылает свой ответ, он размещает этот же (собственный) адрес в этом поле, чтобы master-устройство знало, какое slave-устройство отвечает на запрос.

B.3.3 Function Code. Функциональный код операции

RIO-DO8 поддерживает следующие функции:

Function Code	Функция
03	Чтение регистра (ов)
06	Запись в один регистр (для записи данных формата Integer)
16	Запись в несколько регистров (для записи данных формата Float)

В.3.4 Data Field. Поле передаваемых данных

Поле данных сообщения, посылаемого SCADA системой удаленному прибору, содержит добавочною информацию, которая необходима slave-устройству для детализации функции. Она включает:

- начальный адрес регистра и количество регистров для функции 03 (чтение)
- адрес регистра и значение этого регистра для функции 06 (запись).

Поле данных сообщения, посылаемого в ответ удаленным прибором, содержит:

- количество байт ответа на функцию 03 и содержимое запрашиваемых регистров
- адрес регистра и значение этого регистра для функции 06.

В.3.5 CRC Check. Поле значения контрольной суммы

Значение этого поля - результат контроля с помощью циклического избыточного кода (Cyclical Redundancy Check - CRC).

После формирования сообщения (address, function code, data) передающее устройство рассчитывает CRC код и помещает его в конец сообщения. Приемное устройство рассчитывает CRC код принятого сообщения и сравнивает его с переданным CRC кодом. Если CRC код не совпадает, это означает что имеет место коммуникационная ошибка. Устройство не выполняет действий и не дает ответ в случае обнаружения CRC ошибки.

Последовательность CRC расчетов:

- 1. Загрузка CRC регистра (16 бит) единицами (FFFFh).
- 2. Исключающее ИЛИ с первыми 8 бит байта сообщения и содержимым CRC регистра.
- 3. Сдвиг результата на один бит вправо.
- 4. Если сдвигаемый бит = 1, исключающее ИЛИ содержимого регистра с A001h значением.
- 5. Если сдвигаемый бит нуль, повторить шаг 3.
- 6. Повторять шаги 3, 4 и 5 пока 8 сдвигов не будут иметь место.
- 7. Исключающее ИЛИ со следующими 8 бит байта сообщения и содержимым СКС регистра.
- 8. Повторять шаги от 3 до 7 пока все байты сообщения не обработаются.
- 9. Конечное содержимое регистра и будет значением контрольной суммы.

Когда CRC размещается в конце сообщения, младший байт CRC передается первым.

Приложение В.4 Формат команд

Чтение нескольких регистров. Read Multiple Register (03)

Следующий формат используется для передачи запросов от ПК и ответов от удаленного прибора.

Запрос устройству SENT TO DEVICE:

DEVICE	FUNCTION	D.	CRC	
ADDRESS	CODE 03	STARTING REGISTERS NUMBER OF REGISTERS		
1 BYTE	1 BYTE	HB LB	HB LB	LB HB

Ответ устройства. RETURNED FROM DEVICE:

DEVICE	FUNCTION	DATA				
ADDRESS	CODE 03	NUMBER OF BYTES	FIRST REGISTER		N REGISTER	CRC
1 BYTE	1 BYTE	1 BYTE	HB LB		HB LB	LB HB

Где «NUMBER OF REGISTERS» и п ≤16 – количество запрашиваемых регистров. Если в кадре запроса заказано более 16 регистров, модуль RIO-DO8 в ответе ограничивает их количество до первых 16-ти регистров.

Пример 1:

1. Чтение регистра

Запрос устройству. SENT TO DEVICE: Address 1, Read (03) register #1

DEVICE	FUNCTION	D.	CRC	
ADDRESS	CODE	STARTING REGISTERS		
01	03	00 01	00 01	D5 CA

Ответ устройства. RETURNED FROM DEVICE: Register #1 is set to 1000

DEVICE ADDRESS	FUNCTION CODE	NUMBER OF BYTES	VALUE OF REGISTERS	CRC
01	03	02	03 E8	B8 FA

03E8 Hex = 1000 Dec

2. Запись в регистр (06)

Следующая команда записывает определенное значение в регистр. Write to Single Register (06)

Запрос и Ответ устройства. Sent to/Return from device:

DEVICE	FUNCTION	D.	CRC	
ADDRESS	CODE 06	REGISTER	DATA / VALUE	CKC
1 BYTE	1 BYTE	HB LB	HB LB	LB HB

Приложение В.5 Рекомендации по программированию обмена данными с модулем RIO-DO8

Пример расчета контрольной суммы на языке СИ:

```
unsigned int crc_calculation (unsigned char *buff, unsigned char number_byte)
 unsigned int crc;
 unsigned char bit_counter;
  crc = 0xFFFF;
                                                // initialize crc
  while ( number byte>0 )
              crc ^= *buff++ ;
                                                // crc XOR with data
                                                // reset counter
              bit_counter=0;
              while ( bit_counter < 8 )</pre>
                          if ( crc & 0x0001 )
                               crc >>= 1; // shift to the right 1 position crc ^= 0xA001;// crc XOR with 0xA001
                             else
                                                // shift to the right 1 position
                                 crc >>=1;
              bit_counter++;
                                                // increase counter
                                                // adjust byte counter
      number_byte--;
 return (crc);
                                                // final result of crc
```

Лист регистрации изменений

Изм.			Всего листов в доку-	№ документа	Изменение в документе	Подп.	Дата	
	Изме- ненных	Заме- ненных	Но- вых	менте	H			
1.00			21	21			Марикот Д.Я.	03.10.2014
1.01				21	ver.102.04	Приведен в соответствие с новой прошивкой	Д.Л. Марикот Д.Я.	16.12.2014
1.02				22	ver.102.05	Приведен в соответствие	Марикот	26.05.2016
						с новой прошивкой	Д.Я.	