

УСТРОЙСТВО КОНТРОЛЯ НАПРЯЖЕНИЯ УКН-01

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ
И ПАСПОРТ
ААПЦ.648232.006 РЭ

ВНИМАНИЕ!

До изучения руководства реле не включать!

Надежность и долговечность реле обеспечивается не только качеством реле, но и правильным соблюдением режимов и условий эксплуатации, поэтому соблюдение всех требований, изложенных в настоящем руководстве по эксплуатации (РЭ), является обязательным.

В связи с систематически проводимыми работами по совершенствованию конструкции и технологии изготовления возможны небольшие расхождения между руководством и поставляемым изделием, не влияющие на параметры изделия, на условия его монтажа и эксплуатации.

Изделие содержит элементы микроэлектроники, поэтому персонал должен пройти специальный инструктаж и аттестацию на право выполнения работ (с учетом необходимых мер защиты от воздействия статического электричества). Инструктаж должен проводиться в соответствии с действующим в организации положением.

Наименование версии	Редакция	Дата
Версия № 0	Оригинальное издание	
Версия № 1	Издание исправленное и дополненное	11.06.10.

СОДЕРЖАНИЕ

	Стр
Введение	4
1 Назначение	4
2 Технические данные	4
2.1. Основные параметры	4
2.2. Технические характеристики	5
3 Состав изделия	5
4 Устройство и работа изделия	6 7
5 Руководство по эксплуатации	
5.1. Меры безопасности	7
5.2. Порядок установки	7
5.3. Подготовка к работе, выставление уставок	7
6 Техническое обслуживание	9
7 Требования безопасности	9
8 Размещение и монтаж	9
9 Указания по ремонту	10
10Хранение и транспортирование	10
11Сведения об утилизации	11
12Паспорт	11
12.1. Комплектность	11
12.2.Гарантии изготовителя	11
12.3.Свидетельство о приемке	11
12.4.Маркирование и пломбирование	11
12.5.Тара и упаковка	11
Приложение А Запись обозначения при заказе устройства и в документации	
другого изделия	12

ВВЕДЕНИЕ

Руководство по эксплуатации предназначено для ознакомления с возможностями, принципом работы и правилами эксплуатации устройства УКН-01. Сокращения используемые в тексте: АЦП - аналого-цифровой преобразователь; БП - блок питания; ТН - трансформатор напряжения 110-750 кВ; ДН — датчик напряжения; КРУ - комплектное распределительное устройство.

1 НАЗНАЧЕНИЕ

1.1 Устройство контроля напряжения УКН-01 (далее - устройство) предназначено для контроля цепей напряжения обмоток ТН, собранных в разомкнутый треугольник.

Устройство предназначено для установки на панелях и щитах управления релейных залов, в релейных шкафах и отсеках КРУ.

Запись обозначения при заказе устройства и в документации другого изделия приведена приложении А.

1.2 Устройство является комбинированным микропроцессорным индикатором контроля состояния цепей напряжения открытого треугольника ТН.

Применение в устройстве микроконтроллера позволяет использовать цифровую фильтрацию входного сигнала и обеспечивает высокую точность измерения.

Реализованный в устройстве алгоритм цифровой фильтрации и функции контроля и индикации напряжения позволяет отвечать требованиям, предъявляемым к устройствам контроля напряжения разомкнутого треугольника ТН.

1.3 Устройство изготовляется в климатическом исполнении УХЛ категории размещения 4 по ГОСТ 15150-69.

Устройство предназначено для эксплуатации в следующих условиях:

- -температура окружающей среды от минус 20 °C до плюс 50 °C;
- -относительная влажность окружающего воздуха при 25 °C до 95 %;
- -атмосферное давление от 550 до 800 мм рт. ст.;
- -окружающая среда не взрывоопасная, не содержащая токопроводящей пыли, агрессивных паров и газов;
- -место установки должно быть защищено от попадания брызг, воды, масел и прямого воздействия солнечных лучей.
 - 1.4 Устройство обеспечивает реализацию следующих функций:
 - -измерение текущего действующего значения напряжения входного сигнала;
- -выделение и измерение действующего значения составляющей частотой 150 Гц напряжения входного сигнала;
- -индикацию действующего значения входного сигнала или его составляющей 150 Гц (по выбору);
- -срабатывание, с заданной выдержкой времени, при превышении входного напряжения выше заданной уставки;
- -срабатывание, с заданной выдержкой времени, при понижении составляющей 150 Гц входного напряжения ниже заданной уставки;
 - -фиксацию значения входного напряжения в момент срабатывания устройства;
 - -гальваническую развязку измерительного входа, входа питания и выходных цепей.

2 ТЕХНИЧЕСКИЕ ДАННЫЕ

- 2.1. Основные параметры:
- 2.1.1. Питание устройства:
- -напряжение оперативного питания от 90 до 250 В постоянного или переменного тока частоты 50 Гц;
 - -номинальная частота 50 Гц;

- -потребляемая мощность не более 5 ВА.
- 2.1.2. Габаритные размеры устройства не превышают 70 x 140 x 137 мм. Масса устройства без упаковки не превышает 0,6 кг.
 - 2.2. Технические характеристики
 - 2.2.1. Максимальное напряжение входного сигнала частотой 50 Гц 100 В.
- 2.2.2. Потребляемая мощность по цепи измерительного сигнала не превышает 1 BA.
 - 2.2.3. Диапазон измеряемых напряжений от 0,05 до 9,0 В.
 - 2.2.4. Собственное время срабатывания устройства

Тсоб.=0,1-0,5 с.

- 2.2.5. Диапазон уставок по превышению или понижению напряжения срабатывания Ucp от 0,05 до 9,0 В с шагом 0,01 В.
 - 2.2.6. Время срабатывания устройства определяется по формуле

Тср.=Тсоб.+ Туст.,

где Туст. - уставка по времени, Туст. = 0,5 - 8,0 с, с шагом 0,01 с.

- 2.2.7. Прирост затухания цифрового фильтра на частоте 50 Гц не менее 17 дБ относительно затухания на частоте 150 Гц.
 - 2.2.8. Основная погрешность измерения напряжения не более ±5 %.
- 2.2.9. Дополнительная погрешность измерения напряжения при изменении температуры окружающей среды в рабочем диапазоне не превышает 1 % на каждые 10 °C относительно 20 °C.
 - 2.2.10. Устройство выдерживает длительно напряжение входного сигнала 150 В.
 - 2.2.11. Устройство не срабатывает ложно и не повреждается:
 - -при снятии и подаче напряжения оперативного тока;
 - -при перерывах питания любой длительности с последующим восстановлением;
 - -при замыкании на землю цепей оперативного тока.
- 2.2.12. Коммутационная способность контактов выходного реле в цепи постоянного тока не более 30 Вт при т = 0,02 с и напряжении до 250 В постоянного тока.
- 2.2.13. Электрическое сопротивление изоляции устройства между независимыми электрическими цепями и между этими цепями и корпусом составляет не менее 20 МОм при температуре окружающего воздуха 20 °C и относительной влажности 80 %.

3 СОСТАВ ИЗДЕЛИЯ

В устройстве следует выделить следующие основные узлы и блоки:

- датчик входного напряжения ДН;
- блок измерения, управления и индикации;
- блок питания БП;
- фильтр электромагнитных помех;
- выходное реле.

На передней панели устройства установлены:

- светодиодный матричный индикатор, содержащий 4 знакоместа;
- две кнопки управления и настройки параметров;
- светодиод контроля питания;
- два светодиода сигнализирующих о срабатывании устройства.

4 УСТРОЙСТВО И РАБОТА ИЗДЕЛИЯ

- 4.1. Устройство всегда находится в режиме слежения за величиной напряжения небаланса 3*Uo* на обмотках TH, соединённых в разомкнутый треугольник.
- 4.2. Работа устройства основана на измерении среднеквадратичного значения напряжения входного сигнала и составляющей напряжения частотой 150 Гц этого сигнала.

Для измерения напряжения используется цифровая обработка сигнала. С помощью АЦП периодически производится измерение мгновенного значения исследуемого сигнала, эти выборки сигнала обрабатываются микроконтроллером по алгоритму, реализующему цифровой фильтр и выделяющий напряжение частотой 150 Гц, далее эти выборки накапливаются в течении 256 мс, по окончанию накопления реализуется алгоритм вычисления среднеквадратичного значения для входного сигнала и его составляющей частотой 150 Гц.

Полученные значения сравниваются с уставками напряжений срабатывания устройства. Если напряжение составляющей 50 Гц не превышает, а составляющей 150 Гц не ниже заданного, то их значения выводятся на дисплей.

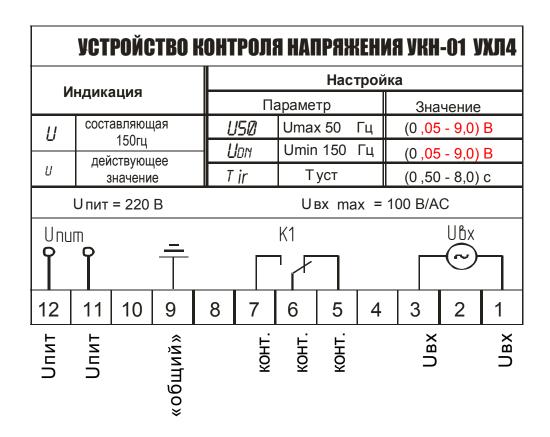
При обнаружении превышения/понижения заданных параметров, запускается таймер и по окончанию выдержки времени, срабатывает выходное реле, на дисплее фиксируется значение напряжения в момент срабатывания выходного реле. На единичных светодиодах фиксируется причина отключения.

Если продолжительность превышения заданных параметров срабатывания меньше выдержки времени таймера, срабатывание выходного реле не происходит.

Возврат устройства в исходное состояние происходит посредством нажатия кнопки «СБРОС», при наличии входных параметров, не превышающих заданные уставки.

- 4.3. Устройство содержит:
- 4.3.1 Датчик входного напряжения, представляющий собой измерительный трансформатор напряжения с коэффициентом трансформации 1:1, обеспечивающий гальваническую развязку входного сигнала от электронной схемы устройства;
 - 4.3.2 Блок измерения, управления и индикации предназначен для:
 - -аналого-цифрового преобразования входного сигнала;
 - -фильтрации составляющей 150 Гц входного сигнала;
- -вычисления среднеквадратичного значения напряжения для входного сигнала и его составляющей частотой 150 Гц;
- -сравнение вычисленного среднеквадратичного значения напряжений с заданной уставкой;
- -отсчета выдержки времени и формирование команды на срабатывание выходного реле;
- -отображения текущего значения входного напряжения, или его составляющей частотой 150 Гц
- 4.3.3 Блок питания преобразует первичное напряжение оперативного питания (переменное, постоянное или выпрямленное) во вторичные напряжения постоянного тока +5 В и +9 В. Блок питания обеспечивает гальваническую развязку между первичными и вторичными напряжениями.
- 4.3.4 Фильтр электромагнитных помех препятствует проникновению помех, возникающих при работе импульсного блока питания, в питающую сеть.
- 4.3.5 Выходное реле обеспечивает гальваническую развязку электронной схемы устройства с коммутируемыми цепями.

5 РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ


5.1. Меры безопасности

- 5.1.1. При работе с устройством необходимо соблюдать общие требования техники безопасности, распространяющиеся на устройства релейной защиты и автоматики энергосистем.
- 5.1.2. К эксплуатации допускаются лица, изучившие настоящее руководство по эксплуатации и прошедшие проверку знаний правил техники безопасности и эксплуатации электроустановок электрических станций и подстанций.
- 5.1.3. Устройство должно устанавливаться на заземленные металлические конструкции, при этом необходимо обеспечить надёжный электрический контакт клеммы «ЗЕМЛЯ» с контуром заземления.

5.2. Порядок установки

- 5.2.1. Механическая установка устройства на панель производится в вертикальном положении при помощи двух крепежных винтов.
- 5.2.2. Электрическая схема подключения устройства приведена на рисунке 1. Оперативное питание напряжением =220 В или ~220 В подключается к клеммам 11 и 12, полярность подключения питания произвольная. Контакты исполнительного реле показаны на схеме в положении выключено.
 - 5.2. Подготовка к работе, выставление уставок
- 5.3.1. Перед вводом в эксплуатацию выставляются уставки и при необходимости производится калибровка устройства. Рекомендуется проверить функционирование устройства на предполагаемых уставках работы. Устройство контроля напряжения не является измерительным прибором, поэтому установку и контроль напряжений срабатывания следует произвести по вольтметру требуемого класса точности.
- 5.3.2. Выбор отображаемого напряжения, выставление уставок и калибровка устройства производится с помощью кнопок Выбор и Сброс.

Выбор значения напряжения отображаемого на дисплее производится кратковременным нажатием кнопки «Выбор», при этом отображаемому входному напряжению соответствует знак **u**, отображению составляющей входного напряжения частотой 150 Гц соответствует знак **U**.

- 1,3 клеммы подключения цепи измерительного напряжения
- 5,6,7 клеммы контактов исполнительного реле
- 9 клемма подключения заземления
- 11,12 клеммы подключения цепи питающего напряжения

Рисунок 1 - Схема подключения устройства УКН-01

Для входа в режим выставления уставок и калибровки необходимо удерживать в нажатом состоянии копку «Выбор» в течение 10 с, при этом на дисплее последовательно появляются следующие знаки соответствующие выбранным параметрам:

- -Udn уставка на срабатывания по снижению составляющей входного напряжения частотой 150 Гц:
 - **-U50** уставка на срабатывания по превышению входного напряжения;
 - -tir уставка по времени срабатывания устройства:
 - -C50 -калибровка устройства по входному напряжению;
- -C15 -калибровка устройства по составляющей входного напряжения частотой 150 Гц.

Для выставления уставок необходимо: после входа в режим отпустить кнопку «Выбор», при этом на дисплее отображаются ранее настроенные параметры, изменение параметров в сторону увеличения или уменьшения выполняется нажатием кнопок «Сброс» и «Выбор», соответственно. Если кнопки не нажимаются более 10 с, установленные параметры запоминаются.

Калибровка устройства на соответствие входного напряжения измеряемому, производится по образцовому вольтметру, изменением соответствующих коэффициентов. Для калибровки необходимо, после входа в режим калибровки, отпустить кнопку «Выбор», при этом на дисплее отображаются ранее установленные коэффициенты. Изменение коэффициентов в сторону увеличения или уменьшения выполняется нажатием кнопок «Сброс» или «Выбор». После отпускания кнопок

«Сброс» или «Выбор», в течение 2 - 3 с, устройство переходит в режим измерения и отображения значения напряжения с изменёнными коэффициентами, повторное нажатие кнопок «Сброс» или «Выбор» в течение 2 - 3 с возвращает устройство в режим изменения коэффициентов, при необходимости процесс повторяется. Если кнопки не нажимаются более 10 с, установленные параметры запоминаются.

6 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 6.1. Техническое обслуживание устройства включает:
- -проверку и калибровку при первом включении:
- -периодические проверки технического состояния.
- 6.2. Проверку и калибровку при первом включении производят в соответствии с руководством по эксплуатации.
- 6.3. Периодические проверки технического состояния проводят через 3-6 лет. Первую периодическую проверку рекомендуется проводить через год после ввода в эксплуатацию. В объём периодической проверки включают внешний осмотр, проверку механического крепления элементов, затяжку винтовых клеммных соединений. Объём электрических испытаний выполняет в соответствии с руководством по эксплуатации.

7 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

Конструкция устройства обеспечивает безопасность обслуживания в соответствии с ГОСТ 12.2.006-75 и является пожаробезопасной. По способу защиты от поражения электрическим током устройства соответствуют классу 0 по ГОСТ 12.2.007-75.

Эксплуатация и обслуживание устройства разрешается лицам, прошедшим специальную подготовку и ознакомившимся с настоящим руководством по эксплуатации.

Степень защиты оболочкой устройства – IP 40 ГОСТ14255-69, степень защиты контактных выводов – IP 10 ГОСТ14255-69.

Монтаж и обслуживание устройства должны производиться в обесточенном состоянии.

Запрещается снимать оболочку с устройств, находящихся в работе.

8 РАЗМЕЩЕНИЕ И МОНТАЖ

Устройства поставляются изготовителем в исполнении для выступающего монтажа на плоскость или рейку с передним присоединением проводов. Крепление устройства осуществляется винтами M4.

Габаритные и установочные размеры при креплении устройства со стороны лицевой панели приведены на рис 2a, при креплении сзади – на рисунке 2б.

Внешние провода подводятся справа, вставляются в отверстия между цоколем и клеммной крышкой под прижимную шайбу и прижимаются винтом.

При установке устройства на панель с задним присоединении проводов, вырезается отверстие в панели (рисунок 2в), устройство крепится винтами М4. Для заднего присоединения проводов необходимо снять крышки с клемм и переставить винты с шайбами на другую сторону клеммной колодки. После перестановки винтов с одной и другой стороны клеммной колодки установить крышки. Для снятия крышки ее необходимо прижать против 4-ой и 9-ой клемм и сдвинуть вправо.

Контактные выводы устройства обеспечивают присоединение одного или двух медных или алюминиевых проводов сечением от 0,75 до 2,5 мм².

При установке устройство должно быть защищено от попадания воды, масла, эмульсий и солнечной радиации, а также должна быть исключена возможность подогрева корпуса устройства до температуры более 55 °C.

Рабочее положение устройства в пространстве – произвольное.

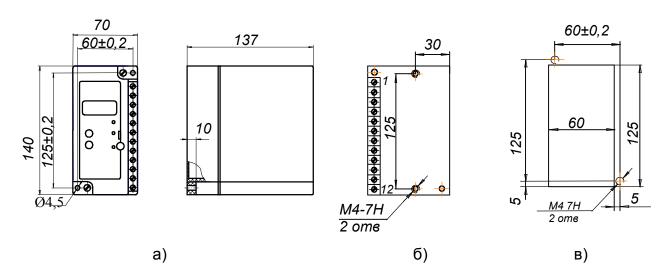


Рисунок 2 - Габаритные и установочные размеры устройства УКН-01

9 УКАЗАНИЯ ПО РЕМОНТУ

Устройство представляет собой сложное изделие и его ремонт должен выполняться квалифицированными специалистами завода-изготовителя либо уполномоченными представителями.

Ремонт устройства в послегарантийный период производится по договору с производителем.

10 ХРАНЕНИЕ И ТРАНСПОРТИРОВАНИЕ

Устройства в упаковке предприятия-изготовителя должны храниться в отапливаемых и вентилируемых хранилищах при температуре от 5 до 40 °C и относительной влажности не более 80 % при температуре 25 °C при отсутствии в воздухе агрессивных примесей.

Условия хранения устройства в упаковке изготовителя должны соответствовать условиям хранения 1(Л) по ГОСТ 15150-69.

Допустимый срок сохраняемости в упаковке - 2 года.

Условия хранения устройств, вмонтированных в аппаратуру, не должны отличаться от условий эксплуатации.

Условия транспортирования устройства в упаковке предприятия изготовителя:

- в части воздействия механических факторов категория С по ГОСТ 23216-78;
- в части воздействия климатических факторов внешней среды категория С по ГОСТ 15150-69, при этом температура окружающей среды при транспортировке в пределах от минус 40 до плюс 55 $^{\circ}$ С.

Погрузка, крепление и перевозка устройств в закрытых транспортных средствах должна осуществляться по правилам перевозок, действующих на каждом виде транспорта.

При этом упакованные устройства должны быть защищены от непосредственного воздействия солнечной радиации и атмосферных осадков.

Устройства, предназначенные для прямого экспорта, в специальной упаковке можно транспортировать морским транспортом без ограничения расстояния с соблюдением указанной выше защиты от воздействия климатических факторов.

При транспортировании устройств в составе оборудования в условиях, отличающихся от условий эксплуатации, они должны быть сняты с разъемов, упакованы в упаковку предприятия-изготовителя и защищены от воздействия климатических факторов.

11 СВЕДЕНИЯ ОБ УТИЛИЗАЦИИ

После отказа устройства (не подлежащего ремонту), а также окончания срока службы, его утилизируют.

Основным методом утилизации является разборка устройства. При разборке целесообразно разделять материалы на группы. Из состава устройства подлежат утилизации черные и цветные металлы, пластмассы. Черные металлы при утилизации необходимо разделять на сталь конструкционную и электротехническую, а цветные металлы – на медь и сплавы на медной основе.

Утилизация должна проводиться в соответствии с требованиями региональных законодательств.

12 ПАСПОРТ

12.1. Комплектность

В комплект поставки входит:

12.2. Гарантии изготовителя.

Изготовитель гарантирует соответствие устройства требованиям технических условий при соблюдении потребителем условий транспортирования, хранения и эксплуатации устройства.

Гарантийный срок эксплуатации 2,5 года в пределах гарантийного срока хранения со дня ввода устройства в эксплуатацию.

Гарантийный срок хранения 3,5 года от даты изготовления устройства.

Гарантийный ремонт осуществляется по адресу:

г. Киев, ул. Семьи Сосниных, 9. т. 406-61-18. ОАО "Электротехнический завод"

12.3. Свидетельство о приемке.

Устройство проверено по программе приемо-сдаточных испытаний и признано годным к эксплуатации.

Контролер	Дата
COLLIDOTICD	дата

12.4. Маркирование и пломбирование.

На корпусе устройства имеется маркировка, содержащая следующие данные:

- товарный знак;
- обозначение изделия («УКН-01»);
- дата изготовления.

12.5. Тара и упаковка.

Транспортная тара имеет маркировку, выполненную по ГОСТ 14192-77, и содержит манипуляционные знаки.

Поставка на малые расстояния или небольших партий устройств по согласованию с потребителем допускается без транспортной тары.

Приложение А

Запись обозначения при заказе устройства и в документации другого изделия

В заказе на устройство должно быть указано:

- наименование и тип устройства;
- климатическое исполнение;
- напряжение питания и род тока.

Пример записи обозначения при заказе устройства УКН-01 и в документации другого изделия.

«Устройство контроля напряжения УКН-01 УХЛ4, \cong 220 B; 50 Гц»

Таблица рекомендуемых замен реле

РЕЛЕ ВРЕМЕНИ

_	
Заменяемое реле	PE∧CiC®
2 PBM	РВЦ-03-2
ВЛ-34, ВЛ-56	ВЛ-81
ВЛ-36	ВЛ-59
ВЛ-40, ВЛ-41	ВЛ-65, ВЛ-78А, ВЛ-78М, ВЛ-164
ВЛ-43ВЛ-49	ВЛ-63ВЛ-69
ВЛ-56	ВЛ-81
BC-10	BC-43
PB 01	ВЛ-69, ВЛ-76М
	ВЛ-79М
PB 03	ВЛ-101А
	ВЛ-103
PB 03 + PH 54	ВЛ-103А
PB 112, ЭВ 112	ВЛ-100А
PB 128, ЭВ 128	BJI-100A
PB 130	ВЛ-64
PB 113, ЭВ 113,	
PB 123, ЭВ 123,	ВЛ-102,
PB 127, ЭВ 127,	ВЛ-73А,
PB 133, ЭВ 133,	ВЛ-73М
PB 143, ЭВ 143	
PB 114, PB 124,	ВЛ-102, ВЛ-73М
PB 134, PB 144	DJI-102, DJI-/3WI
PB 132, ЭВ 132,	ВЛ-100А
PB 142, ЭВ 142	DJI-100A
PB 15	ВЛ-81

_		
Заменяемое реле	<i>PEΛCiC</i> ®	
PB 19,		
PB 215, PB 225,	ВЛ-101А	
PB 235, PB 245		
PB 217, PB 227,	ВЛ-102,	
PB 237, PB 247	ВЛ-73М	
PB 218, PB 228,	ВЛ-100А	
PB 238, PB 248		
PBM 12, PBM 13	ВЛ-104	
PB 12, PB 13, PB	ВЛ-64, ВЛ-66,	
14	B31 01, B31 00,	
РВП 72-3121,	ВЛ-68, ВЛ-69,	
PKB 11-33-11,	ВЛ-76А,	
PKB 11-43-11,	ВЛ-76М,	
PCB 18-11,	ВЛ-161,	
PCB 19-11	ВЛ-162	
РВП 72-3221,	ВЛ-73А,	
PKB 11-33-12,	ВЛ-73М,	
PKB 11-43-12,	ВЛ-102	
PCB 18-12, 19-12	DJ1-102	
РВП 72-3122,	ВЛ-54,	
PKB 11-33-21,	ВЛ-75А,	
PKB 11-43-21,	ВЛ-75М,	
PCB 19-31	ВЛ-161	
PBT 1200	BC-43	
РПВ 01	ВЛ-108	
РПВ 58, 69Т	D71-100	
РРВП-1	РВЦ-03	

Заменяемое реле	<i>PEΛCiC</i> [®]
PCB 01-1	ВЛ-68, ВЛ-76М
PCB 01-3	ВЛ-81, ВС-43
PCB 01-4	ВЛ-76М
PCB 01-5	ВЛ-65
PCB 13	ВЛ-104
PCB 14	ВЛ-101А
	ВЛ-64, ВЛ-66,
PCB 15-1, PCB 15M-1	ВЛ-68, ВЛ-69,
PCB 16-1, PCB 16M-1	ВЛ-161, ВЛ-162
PCB 15-2, PCB 15M-2	ВЛ-73А, ВЛ-
PCB 16-2, PCB 16M-2	73М, ВЛ-102
PCB 15-3	ВЛ-65, ВЛ-78М,
PCD 13-3	ВЛ-164
PCB 15-4, PCB 15M-4	ВЛ-67
PCB 16-4, PCB 16M-4	BJ1-0 /
PCB 15-5	ВЛ-75М
PCB 16-3	ВЛ-59, ВЛ-159М
PCB 17-3	ВЛ-81
PCB 17-4	BC-43-3
PCB 18-13	ВЛ-100А
PCB 18-23, PCB 19	ВЛ-101А
PCB 160	ВЛ-65, ВЛ-78А,
102 100	ВЛ-78М, ВЛ-164
PCB 260	ВЛ-100А
PCB 255	ВЛ-101А
ТПТ	ВЛ-159

РЕЛЕ НАПРЯЖЕНИЯ

Заменяемое реле	PEΛCiC [®]
PCH 12	НЛ-8, НЛ-18-1
PCH 14, PCH 15, PCH 50-2	НЛ-4
PCH 16, PCH 17, PH-58	НЛ-5

PEACiC®
НЛ-6, НЛ-6А,
НЛ-8, НЛ-18-
1,
НЛ-19

Заменяемое реле	PEACiC®
PH 54, PH 154,	
PCH 18,	НЛ-7, НЛ-7А,
PCH 50-4, PCH 50-7,	НЛ-8, НЛ-18-2
ЭН 528, ЭН 529	
РН 54 и РВ 03	ВЛ-103А

промежуточные реле

Заменяемое реле	PEΛCiC®
ПЭ 6, ПЭ-36, ПЭ-37	РЭП-20
РП 8, РП 9	ПЭ-46
РП 11, РП 12 МКУ 48, ПЭ-21	
РПУ2-36	ПЭ-40
РП 16-1	
РП 16-2, -3, -4	ПЭ-42
РП 16-5, 7	ПЭ-40
РП 17-1	ПЭ-41
РП 17-2, -3	ПЭ-43

Заменяемое реле	PEACiC®
РП 17-4, -5	ПЭ-41
РП 18-1, -2, -3	ПЭ-44
РП 18-4, -5, -6, -7	ПЭ-45
РП 18-8, -9, -0	ПЭ-45
РП 20	РЭП-20
РП 21М	РЭП-21
РП 23, РП 25	ПЭ-40
РП 221, 222, 225	ПЭ-41
РП 232, 233, 254	ПЭ-42
_	

Заменяемое реле	PEACiC®
РП 252	ПЭ-45
РП 255	ПЭ-42
РП 256	ПЭ-45
РП 258	ПЭ-44
РПТ 100	РЭП-20
РЭП 25	ПЭ-40, ПЭ-42
РЭП 36	ПЭ-40, ПЭ-42
РЭП 37	ПЭ-44, ПЭ-45
РЭП 38Д	ПЭ-46
РЭП 96	ПЭ-44, ПЭ-45

РЕЛЕ КОНТРОЛЯ ФАЗ

Заменяемое реле	PEΛCiC®
РОФ-11, -12, -13	ЕЛ-11, -12, -13
ЕЛ-8, ЕЛ-10	ЕЛ-11
PCH-25M	ЕЛ-11
PCH-26M	ЕЛ-12
PCH-27M	ЕЛ-13

РЕЛЕ ТОКА

Заменяемое реле	ΡΕΛCiC [®]
PCT 11,	
PCT 13,	АЛ-1
PCT 40-1	
PT3 51	АЛ-4

РЕЛЕ ЗАЩИТЫ ДВИГАТЕЛЯ

Заменяемое реле	PE∧CiC®
УЗОТЭ-2У,	
PЭ3Э-6,	
РЗД-1,	РДЦ-01
РЗД-3М,	
РЗДУ	

