

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ И ПАСПОРТ ААПЦ.648232.007 РЭ

ВНИМАНИЕ!

До изучения руководства реле не включать.

Надежность и долговечность реле обеспечивается не только качеством реле, но и правильным соблюдением режимов и условий эксплуатации, поэтому соблюдение всех требований, изложенных в настоящем руководстве по эксплуатации (РЭ), является обязательным.

В связи с систематически проводимыми работами по совершенствованию конструкции и технологии изготовления возможны небольшие расхождения между руководством и поставляемым изделием, не влияющие на параметры изделия, на условия его монтажа и эксплуатации.

Наименование версии	Редакция	Дата
Версия № 0	Оригинальное издание	16.11.09.
Версия № 1	Издание исправленное и дополненное	23.12.11.
Версия № 2	Издание исправленное и дополненное	23.06.16.

СОДЕРЖАНИЕ

4
4
5
6
6
8
9
10
11
11
11
12
12
13

ВВЕДЕНИЕ

Настоящее руководство по эксплуатации предназначено для ознакомления с возможностями, принципом работы и правилами эксплуатации устройства УКН-01-М.

Сокращения используемые в тексте: АЦП - аналого-цифровой преобразователь, БП - блок питания, ТН - трансформатор напряжения 110-750 кВ, ДН — датчик напряжения, КРУ - комплектное распределительное устройство.

1 НАЗНАЧЕНИЕ

Устройство контроля напряжения УКН-01-М (далее - устройство) предназначено для контроля цепей напряжения обмоток ТН, собранных в разомкнутый треугольник. Устройство предназначено для установки на панелях и щитах управления релейных залов, в релейных шкафах и отсеках КРУ.

Запись обозначения при заказе устройства и в документации другого изделия приведена приложении А.

- 1.1 Устройство является комбинированным микропроцессорным индикатором контроля состояния цепей напряжения открытого треугольника ТН. Применение в устройстве микроконтроллера позволяет использовать цифровую фильтрацию входного сигнала и обеспечивает высокую точность измерения. Реализованный в устройстве алгоритм цифровой фильтрации и функции контроля и индикации напряжения позволяет реализовать технические параметры, отвечающие требованиям, предъявляемым к устройствам контроля напряжения разомкнутого треугольника ТН.
- 1.2 Устройство изготовляется в климатическом исполнении УХЛ категории размещения 4 по ГОСТ 15150-69.

Устройство предназначено для эксплуатации в следующих условиях:

- температура окружающей среды от минус 20 °C до плюс 55 °C;
- относительная влажность окружающего воздуха при температуре плюс 25 $^{\circ}$ C не более 80 %;
 - атмосферное давление от 550 до 800 мм рт. ст.;
- окружающая среда не взрывоопасная, не содержащая токопроводящей пыли, агрессивных паров и газов;
- место установки должно быть защищено от попадания брызг, воды, масел и прямого воздействия солнечных лучей.

Механические внешние воздействующие факторы соответствуют группе М7 по ГОСТ 17516.1-90.

При этом реле устойчивы к вибрационным нагрузкам:

- в диапазоне частот от 5 до 15 Гц с максимальным ускорением 3g;
- в диапазоне частот от 15 до 60 Гц с максимальным ускорением 2g;
- в диапазоне частот от 60 до 100 Гц с максимальным ускорением 1g.

Реле выдерживают:

- многократные ударные нагрузки длительностью от 2 до 20 мс с максимальным ускорением 3g.
 - многократные удары длительностью (2-20) мс с ускорением 30 м/ c^2 (3 g).

Рабочее положение в пространстве – вертикальное.

- 1.3 Устройство обеспечивает реализацию следующих функций:
- измерение текущего действующего значения напряжения входного сигнала;
- выделение и измерение действующего значения составляющей частотой 150 Гц напряжения входного сигнала;
- индикацию действующего значения входного сигнала или его составляющей 150 Гц (по выбору);
- срабатывание, с заданной выдержкой времени, при превышении входного напряжения выше заданной уставки;
- срабатывание, с заданной выдержкой времени, при понижении составляющей 150 Гц входного напряжения ниже заданной уставки;

- отключение функции срабатывания по составляющей 150 Гц входного напряжения;
 - фиксацию значения входного напряжения в момент срабатывания устройства;
 - гальваническую развязку измерительного входа, входа питания и выходных цепей.

2 ТЕХНИЧЕСКИЕ ДАННЫЕ

- 2.1 Основные параметры
- 2.1.1 Питание устройства:
- напряжение оперативного питания от 90 до 250 В постоянного или переменного тока частоты 50 Гц;
 - номинальная частота 50 Гц;
 - потребляемая мощность не более 5 ВА.
 - 2.1.2 Габаритные размеры устройства не превышают 70 х 140 х 137 мм.
 - 2.2 Технические характеристики
 - 2.2.1 Диапазон измеряемых напряжений от 0,02 до 9,0 В
- 2.2.2 Основная погрешность измерения напряжения в диапазоне (0,02...0,99) В не более $\pm 0,01$ В, в диапазоне (1...9) В не более $\pm 0,1$ В.
 - 2.2.3 Диапазон уставок срабатывания:
 - по превышению входного напряжения от 0,3 до 9,0 В с шагом 0,01 В;
- по понижению составляющей 150 Гц входного напряжения Ucp от 0,02 до 9,0 В с шагом 0.01 В.
 - 2.2.4 Максимальное напряжение входного сигнала частотой 50 Гц 100 В.
- 2.2.5 Входное напряжение в диапазоне от 9 до 120 В интерпретируется устройством как аварийное, превышающее верхний порог уставки.
 - 2.2.6 Время срабатывания устройства:

где Туст. - уставка по времени, Туст. = (0,1 - 9,9) с, с шагом 0,1 с.

- 2.2.7 Погрешность срабатывания по времени в диапазоне (0,1...0,9) с не более $\pm 0,1$ с, в диапазоне (1...9,9) с не более $\pm 0,2$ с.
- 2.2.8 Затухание цифрового фильтра на частоте 50 Гц относительно частоты 150 Гц не менее 17 дБ.
 - 2.2.9 Потребляемая мощность по цепи измерительного сигнала не более 1 ВА.
- 2.2.10 Устройство выдерживает в течение 1 мин напряжение входного сигнала величиной не более 150 В.
- 2.2.11 Дополнительная погрешность измерения напряжения при изменении температуры окружающей среды в рабочем диапазоне не превышает 1 % на каждые 10 °C относительно температуры плюс 20 °C
 - 2.2.12 Устройство не срабатывает ложно и не повреждается:
 - при снятии и подаче оперативного напряжения;
 - при перерывах питания любой длительности с последующим восстановлением;
 - при замыкании на землю цепей оперативного питания.
- 2.2.13 Электрическое сопротивление изоляции устройства между независимыми электрическими цепями и между этими цепями и корпусом составляет не менее 20 МОм при температуре окружающего воздуха плюс 20 °C и относительной влажности 80 %.
 - 2.2.14 Устройство устойчиво к воздействию следующих видов помех:
- повторяющиеся колебательные затухающие помехи (КЗП) с частотой колебаний $(1,0\pm0,1)$ МГц, модуль огибающей которых уменьшается на (50 ± 10) % относительно максимального значения после 3-6 периодов, частота повторений КЗП (400 ± 40) Гц, внутреннее сопротивление источника КЗП (200 ± 40) Ом, наибольшее значение напряжения высокочастотного импульса помехи при подаче его на выводы входной воздействующей величины испытуемого реле по схемам "провод провод" и "проводземля" $(1,0\pm0,1)$ кВ;

- наносекундные импульсные помехи (НИП), представляющие собой последовательность пачек импульсов положительной или отрицательной полярности с частотой импульсов в пачке (5 ± 1) кГц, длительностью импульса на уровне 50 % пикового значения (50 ± 15) нс, длительностью фронта импульсов по уровню 10 % и 90 % пикового значения ($5\pm1,5$) нс, длительностью пачки импульсов (15 ± 3) мс с периодом следования пачек (300 ± 15) мс;
- электростатические разряды до 6 кВ при контактном разряде или до 8 кВ при воздушном разряде на корпус реле и на те его точки, которые доступны обслуживающему персоналу при эксплуатации;
 - магнитное поле промышленной частоты с напряжённостью до 30 А/м;
- импульсное магнитное поле, представляющее собой импульсы длительностью 8/20 мкс с амплитудой до 300 А/м;
 - низкочастотные помехи частотой до (10-20) кГц).
- 2.2.15 Реле не даёт ложных срабатываний (размыкание замыкающего контакта) при кратковременных провалах и всплесках питающего напряжения длительностью не более 50 мс.
- 2.2.16 Коммутационная способность контактов выходного реле в цепи постоянного тока не более 30 Вт при t=0.02 с и напряжении до 250 В постоянного тока.
- 2.2.17 Механическая и коммутационная износостойкость исполнительного реле не менее 500 000 циклов.
 - 2.2.18 Масса реле не более 0,7 кг.
 - 2.2.19 Срок службы устройства не менее 12 лет.

Конструкция устройства обеспечивает установку выступающим монтажом с передним или задним присоединением проводов. Габаритные и установочные размеры устройства приведены на рисунке 3 (раздел 6).

Пример записи обозначения устройства при заказе и в документации другого изделия приведен в приложении А.

3 СОСТАВ ИЗДЕЛИЯ

В устройстве следует выделить следующие основные узлы и блоки:

- датчик входного напряжения ДН;
- блок измерения, управления и индикации;
- блок питания БП;
- фильтр электромагнитных помех;
- выходное реле.

На передней панели устройства установлены:

- светодиодный матричный индикатор содержащий 4 знакоместа;
- две кнопки управления и настройки параметров;
- светодиод контроля питания;
- два светодиода сигнализирующих о срабатывании устройства.

Внешний вид передней панели устройства приведен на рисунке 1.

4 УСТРОЙСТВО И РАБОТА ИЗДЕЛИЯ

- 4.1 Устройство всегда находится в режиме слежения за величиной напряжения небаланса 3Uo на обмотках TH, соединённых в разомкнутый треугольник.
- 4.2 Работа устройства основана на измерении среднего значения напряжения входного сигнала и составляющей напряжения частотой 150 Гц этого сигнала. Для измерения напряжения используется цифровая обработка сигнала. С помощью АЦП периодически производится измерение мгновенного значения исследуемого сигнала, эти выборки сигнала обрабатываются микроконтроллером по алгоритму, реализующему цифровой фильтр и выделяющий напряжение частотой 150 Гц, а далее реализуется алгоритм вычисления среднего значения входного сигнала и его составляющей частотой 150 Гц.

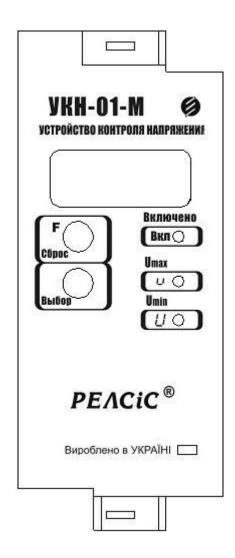


Рисунок 1 - Внешний вид передней панели

Полученные значения сравниваются с уставками напряжений срабатывания устройства. Если напряжение составляющей 50 Гц не превышает, а составляющей 150 Гц не ниже заданного, то их значения выводятся на дисплей.

При обнаружении превышения/понижения заданных параметров, запускается таймер и по окончанию выдержки времени, срабатывает выходное реле, а на дисплее фиксируется значение напряжения в момент срабатывания выходного реле. Единичные светодиоды указывают на причину отключения:

- *u* превышение уровня напряжения входного сигнала;
- **U** снижение уровня составляющей частотой 150 Гц.

Если уровень входного напряжения превышает 9 В, то на дисплее в режиме индикации *и* отображается число «**9.99**». Возврат устройства в исходное состояние после срабатывания выходного реле возможен при наличии входных параметров, не выходящих за диапазон заданных уставок, и осуществляется посредством нажатия кнопки «**F/Cброс**» в течении 5 с. Если продолжительность превышения заданных параметров срабатывания меньше выдержки времени таймера, срабатывание выходного реле не происходит.

- 4.3 Устройство содержит:
- 4.3.1 Датчик входного напряжения, представляющий собой измерительный трансформатор напряжения с коэффициентом трансформации 1:1, обеспечивающий гальваническую развязку входного сигнала от электронной схемы устройства;
 - 4.3.2 Блок измерения, управления и индикации предназначен для:
 - аналого-цифрового преобразования входного сигнала;

- фильтрации составляющей 150 Гц входного сигнала;
- вычисления среднеквадратичного значения напряжения для входного сигнала и его составляющей частотой 150 Гц;
- сравнения вычисленного среднеквадратичного значения напряжений с заданной уставкой;
- отсчета выдержки времени и формирование команды на срабатывание выходного реле;
- отображения текущего значения входного напряжения, или его составляющей частотой 150 Гц.
- 4.3.3 Блок питания преобразует первичное напряжение оперативного питания (переменное, постоянное или выпрямленное) во вторичные напряжения постоянного тока +5 В и +9 В. Блок питания обеспечивает гальваническую развязку между первичными и вторичными напряжениями.
- 4.3.4 Фильтр электромагнитных помех препятствует проникновению в питающую сеть помех, возникающих при работе импульсного блока питания.
- 4.3.5 Выходное реле обеспечивает гальваническую развязку электронной схемы устройства с коммутируемыми цепями.

5 РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

- 5.1 Подготовка к работе, выставление уставок.
- 5.1.1 Перед вводом в эксплуатацию необходимо подключить оперативное питание и выставить уставки. О наличии напряжения оперативного питания сигнализирует единичный светодиод **Вкл.**
- 5.1.2 Выбор отображаемого напряжения, выставление уставок производится с помощью кнопок «Выбор» и «F/Сброс».
- 5.1.3 Выбор значения напряжения, отображаемого на дисплее, производится кратковременным нажатием кнопки «**Выбор**», при этом отображаемому входному напряжению соответствует знак U, отображению составляющей входного напряжения частотой 150 Гц соответствует знак U.
- В режиме индикации U уровня входного напряжения при наличии индустриальных помех возможно появление начальных показаний на дисплее.
- 5.1.4 Вход в режим выставления уставок осуществляется кратковременным нажатием кнопки «**F/Cброс**». При нажатии на кнопку «**Выбор**» на дисплее последовательно появляются следующие знаки, соответствующие выбранным параметрам:
 - *u* уставка на срабатывание по превышению входного напряжения;
- *U* уставка на срабатывание по снижению составляющей входного напряжения частотой 150 Гц;
 - *t* уставка по времени срабатывания устройства.
 - Допустимые диапазоны уставок приведены на рисунке 2.
- 5.1.5 Для выставления уставок необходимо: после входа в режим, нажимая кнопку «Выбор», выбрать необходимый параметр, затем нажать необходимое количество раз кнопку «F/Cброс» для выбора разряда числового значения параметра. Изменение значения производится кнопкой «Выбор». После установки значения самого младшего разряда параметра, необходимо еще раз нажать кнопку управления «F/Cброс» для записи измененных значений параметров в энергонезависимую память реле. При правильном вводе значений на индикаторе на 2 секунды загорится надпись "ПРГ" и реле вернется в начало текущего режима программирования параметра с сохранением значений в энергонезависимой памяти. В противном случае, когда измененное значение уставки не соответствует допустимому диапазону, на индикаторе появится надпись «Err». Выход из режима выставления уставок происходит автоматически через 7 с при отсутствии нажатия на кнопки.

- 5.1.6 Для отключения функции срабатывания по составляющей 150 Гц входного напряжения необходимо в пункте *U* режима программирования нажать и удерживать в течении 5 с кнопку «**F/Cброс**» до появления надписи "**OFF**". Следует учесть, что при этом режим измерения составляющей 150 Гц входного напряжения сохраняется. Включение функции срабатывания по составляющей 150 Гц входного напряжения производится нажатием и удержанием в течении 5 с кнопки «**F/Cброс**» до появления на индикаторе числового значения.
- 5.1.7 Устройство контроля напряжения не является измерительным прибором, поэтому установку и контроль напряжений срабатывания следует произвести по вольтметру требуемого класса точности.

Индикация			Настройка								
,	ІНДИ	каци	Я		Параметр				Значение		
U	деі	йствук	щее		<i>i</i> (Umax 50 Гц		1	(0,30 - 9,00) B		
	значение		47	/ T	Jmin	150Γι	Į.	(0,02	- 9,00)) B	
IJ	составляющая 150гц		E	:	Ту	СТ		(0,10	- 9,90)) c	
Uпит≃220 B				•	U	вх т	ax =	100 E	B/AC		
Uni	Uпит К1 Uвх										
0			Ť		Γ	```F				<u>-</u>	
12	11	10	9	8	7	6	5	4	3	2	1

- 1,3 клеммы подключения цепи измерительного напряжения
- 5,6,7 клеммы контактов исполнительного реле
- 9 клемма подключения заземления
- 11,12 клеммы подключения цепи питающего напряжения

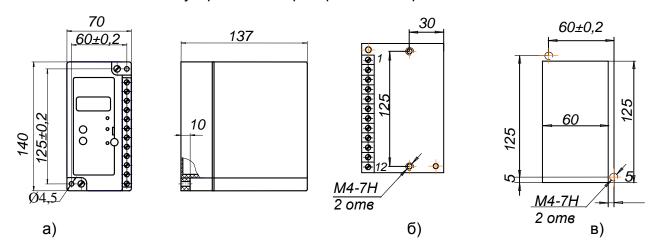
Рисунок 2 - Схема подключения и допустимые диапазоны уставок устройства УКН-01-М

6 РАЗМЕЩЕНИЕ И МОНТАЖ

Устройство поставляется изготовителем в исполнении для выступающего монтажа на плоскость или рейку с передним присоединением проводов. Крепление устройства производится двумя винтами М4. Устройство можно крепить со стороны лицевой панели (рисунок 3а) или сзади (рисунок 3б).

При установке устройства на панель с задним присоединении проводов необходимо сделать вырез в панели (рисунок 3в). Устройство крепится двумя винтами М4. Для заднего присоединения проводов необходимо снять крышки с клемм и переставить винты с шайбами на другую сторону клеммной колодки. Для снятия крышки ее необходимо прижать напротив 4-ой и 9-ой клемм и сдвинуть вправо. После перестановки винтов клеммной колодки с одной стороны на другую необходимо установить крышки на клеммы.

Электрическая схема подключения устройства приведена на рисунке 2. Оперативное питание напряжением =220 В или ~220 В подключается к клеммам 11 и 12, полярность подключения питания произвольная. Контакты исполнительного реле показаны на схеме в положении выключено.


Внешние провода подводятся справа, вставляются в отверстия между цоколем и клеммной крышкой под прижимную шайбу и прижимаются винтом. Контактные выводы

устройства обеспечивают присоединение одного или двух проводов сечением от $0.75~\rm до$ $2.5~\rm mm^2$.

Пред монтажом устройства рекомендуется в лабораторных условиях проверить его функционирование на предполагаемых рабочих уставках (раздел 7).

При установке устройство должно быть защищено от попадания воды, масла, эмульсий и солнечной радиации, а также должна быть исключена возможность подогрева корпуса устройства до температуры более 55 °C.

Рабочее положение устройства в пространстве – произвольное.

- а) вид со стороны лицевой панели,
- б) вид сзади,
- в) вырез в панели для заднего присоединения проводов

Рисунок 3 - Габаритные и установочные размеры устройства УКН-01-М

7 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Техническое обслуживание устройства включает:

- проверку при первом включении;
- периодические проверки технического состояния.

Проверку при первом включении производят на предполагаемых рабочих уставках в лабораторных условиях с помощью генератора сигналов низкой частоты с диапазоном выходных напряжений не менее (0,02-10) В и вольтметра переменного напряжения с диапазоном входных напряжений не менее (0,02-10) В. Для проверки необходимо подключить выход генератора сигналов низкой частоты к измерительному входу устройства (клеммы 1,3). Для контроля уровня входного сигнала к измерительному входу устройства подключить вольтметр переменного напряжения. Затем подать оперативное питание на клеммы 11,12 и в соответствии с руководством по эксплуатации установить необходимые рабочие уставки.

Отсутствие входного напряжения частотой 150 Гц интерпретируется устройством как аварийная ситуация и происходит срабатывание его выходного реле, зажигание светодиода ${\it U}$ и блокирование устройства. Для возврата устройства в исходное состояние необходимо установить частоту генератора сигналов низкой частоты, равную 150 Гц, а регулятором его выходного уровня -напряжение, превышающее порог уставки срабатывания по составляющей входного напряжения частотой 150 Гц, и удерживать нажатой кнопку «F/Сброс» в течении 5 с. Затем необходимо плавно снижать уровень входного напряжения устройства до момента срабатывания выходного реле и зажигания светодиода ${\it U}$.

Для проверки срабатывания по превышению входного напряжения необходимо отключить функцию срабатывания по составляющей входного напряжения 150 Гц (п.5.1.16 руководства по эксплуатации) установить частоту генератора сигналов низкой частоты, равную 50 Гц, а регулятором его выходного уровня - напряжение, ниже порога

уставки срабатывания по превышению входного напряжения, и удерживать нажатой кнопку «F/Сброс» в течении 5 с. Затем необходимо плавно увеличивать уровень входного напряжения устройства до момента срабатывания выходного реле и зажигания светодиода *U*. Включить при необходимости функцию срабатывания по составляющей входного напряжения 150 Гц.

7.1 Периодические проверки технического состояния проводят через 3-6 лет. Первую периодическую проверку рекомендуется проводить через год после ввода в эксплуатацию. В объём периодической проверки включают внешний осмотр, проверку механического крепления элементов, затяжку винтовых клеммных соединений. Электрические испытания выполняется в необходимом объеме и в соответствии с руководством по эксплуатации.

8 УКАЗАНИЯ ПО РЕМОНТУ

Устройство представляет собой сложное изделие и его ремонт должен выполняться квалифицированными специалистами завода-изготовителя либо уполномоченными представителями. Ремонт устройства в послегарантийный период производится по договору с производителем.

9 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

Конструкция устройства обеспечивает безопасность обслуживания в соответствии с ГОСТ 12.2.006-75 и является пожаробезопасной. По способу защиты от поражения электрическим током устройства соответствуют классу 0 по ГОСТ 12.2.007-75.

Эксплуатация и обслуживание устройства разрешается лицам, прошедшим специальную подготовку, проверку знаний правил техники безопасности при эксплуатации электроустановок электрических станций и подстанций, а также ознакомившимся с настоящим руководством по эксплуатации. При работе с устройством необходимо соблюдать общие требования техники безопасности, распространяющиеся на устройства релейной защиты и автоматики энергосистем.

Степень защиты оболочкой устройства — IP 40 ГОСТ14255-69, степень защиты контактных выводов — IP 10 ГОСТ14255-69.

Монтаж и обслуживание устройства должны производиться в обесточенном состоянии. Устройство должно устанавливаться на заземленные металлические конструкции, при этом необходимо обеспечить надёжный электрический контакт клеммы «ЗЕМЛЯ» с контуром заземления. Запрещается снимать оболочку с устройства, находящегося в работе.

10 ХРАНЕНИЕ И ТРАНСПОРТИРОВАНИЕ

Устройства в упаковке предприятия-изготовителя должны храниться в отапливаемых и вентилируемых хранилищах при температуре от плюс 5 до плюс 40 °C и относительной влажности не более 80 % при температуре плюс 25 °C при отсутствии в воздухе агрессивных примесей.

Условия хранения устройства в упаковке изготовителя должны соответствовать условиям хранения 1(Л) по ГОСТ 15150-69.

Допустимый срок хранения в заводской упаковке - 2 года.

Условия хранения устройств, вмонтированных в аппаратуру, не должны отличаться от условий эксплуатации.

Условия транспортирования устройства в упаковке предприятия изготовителя:

- в части воздействия механических факторов категория С по ГОСТ 23216-78;
- в части воздействия климатических факторов внешней среды категория С по ГОСТ 15150-69, при этом температура окружающей среды при транспортировке в пределах от минус 40 до плюс 55 $^{\circ}$ C.

Погрузка, крепление и перевозка устройств в закрытых транспортных средствах должны осуществляться по правилам перевозок, действующих на каждом виде транспорта.

При этом упакованные устройства должны быть защищены от непосредственного воздействия солнечной радиации и атмосферных осадков.

Устройства, предназначенные для прямого экспорта, в специальной упаковке можно транспортировать морским транспортом без ограничения расстояния с соблюдением указанной выше защиты от воздействия климатических факторов.

При транспортировании устройств в составе оборудования в условиях, отличающихся от условий эксплуатации, они должны быть сняты с разъемов, упакованы в упаковку предприятия-изготовителя и защищены от воздействия климатических факторов.

11 СВЕДЕНИЯ ОБ УТИЛИЗАЦИИ

После отказа устройства (не подлежащего ремонту), а также окончания срока службы, его утилизируют.

Основным методом утилизации является разборка устройства. При разборке целесообразно разделять материалы на группы. Из состава устройства подлежат утилизации черные и цветные металлы, пластмассы. Черные металлы при утилизации необходимо разделять на сталь конструкционную и электротехническую, а цветные металлы – на медь и сплавы на медной основе.

Утилизация должна проводиться в соответствии с требованиями региональных законодательств.

12 ПАСПОРТ

12.1 Комплектность

В комплект поставки входит:

Устройство контроля напряжения1 шт.

Руководство по эксплуатации и паспорт......1 шт.

12.2 Гарантии изготовителя.

Изготовитель гарантирует соответствие устройства требованиям технических условий при соблюдении потребителем условий транспортирования, хранения и эксплуатации устройства.

Гарантийный срок эксплуатации 2,5 года в пределах гарантийного срока хранения со дня ввода устройства в эксплуатацию.

Гарантийный срок хранения 3,5 года от даты изготовления устройства.

Гарантийный ремонт осуществляется по адресу:

- г. Киев, ул. Семьи Сосниных, 9. т. 406-61-18. ООО «НПП «РЕЛСіС»
- 12.3 Свидетельство о приемке.

Устройство проверено по программе приемо-сдаточных испытаний и признано годным к эксплуатации.

Контролер	Дата
I COLLIDO) ICD	дата

12.4 Маркирование и пломбирование.

На корпусе устройства имеется маркировка, содержащая следующие данные:

- товарный знак;
- обозначение изделия («УКН-01-М»);
- дата изготовления.
- 12.5 Тара и упаковка.
- 1) Транспортная тара имеет маркировку, выполненную по ГОСТ 14192-77 и содержит манипуляционные знаки.
- 2) Поставка на малые расстояния или небольших партий устройств по согласованию с потребителем допускается без транспортной тары.

Приложение А

Запись обозначения при заказе устройства и в документации другого изделия

В заказе на устройства должно быть указано:

- наименование и тип устройства;
- климатическое исполнение;
- напряжение питания и род тока.

Пример записи обозначения при заказе устройства УКН-01-М и в документации другого изделия.

«Устройство контроля напряжения УКН-01-М УХЛ4, ≥ 220В 50 Гц»

Таблица рекомендуемых замен реле

РЕЛЕЙНАЯ ЗАЩИТА И АВТОМАТИКА

Заменяемое реле	PEΛCiC®
РЧ-1, РЧ-2, РСГ-11	УРЧ-3М

Заменяемое реле	PEΛCiC [®]
Миком Р121,122,123	РЗЛ-01
УЗА АТ; МРЗС	F 371-01

Заменяемое реле	PEΛCiC®
PT-80, PC-80M2	РЗЛ-03

РЕЛЕ ВРЕМЕНИ

Заменяемое реле	PEΛCiC [®]
2 PBM	РВЦ-03-2
ВЛ-34, ВЛ-56	ВЛ-81
ВЛ-36	ВЛ-59
ВЛ-40, ВЛ-41	ВЛ-65, ВЛ-78А, ВЛ-78М, ВЛ-164
ВЛ-43ВЛ-49	ВЛ-64ВЛ-69
ВЛ-56	ВЛ-81
BC-10	BC-43
PB 01	ВЛ-69, ВЛ-76М
PB 03	ВЛ-79М ВЛ-101А ВЛ-103
PB 03 + PH 54	ВЛ-103А
PB 112, ЭВ 112 PB 128, ЭВ 128	ВЛ-100А
PB 130	ВЛ-64
PB 113, ЭВ 113, PB 123, ЭВ 123, PB 127, ЭВ 127, PB 133, ЭВ 133, PB 143, ЭВ 143	ВЛ-102, ВЛ-73А, ВЛ-73М
PB 114, PB 124, PB 134, PB 144	ВЛ-102, ВЛ-73М
PB 132, ЭВ 132, PB 142, ЭВ 142	ВЛ-100А
PB 15	ВЛ-81

Заменяемое реле	PEACiC®	
PB 19,		
PB 215, PB 225,	ВЛ-101А	
PB 235, PB 245		
PB 217, PB 227,	ВЛ-102,	
PB 237, PB 247	ВЛ-73М	
PB 218, PB 228,	ВЛ-100А	
PB 238, PB 248	DJ1-100A	
PBM 12, PBM 13	ВЛ-104	
PB 12, PB 13, PB 14	ВЛ-64, ВЛ-66,	
РВП 72-3121,	ВЛ-68, ВЛ-69,	
PKB 11-33-11.	ВЛ-76А,	
PKB 11-43-11,	ВЛ-76М,	
PCB 18-11,	ВЛ-161,	
PCB 19-11	ВЛ-162	
РВП 72-3221,		
PKB 11-33-12,	ВЛ-73А,	
DICD 11 42 12	ВЛ-73М,	
РКВ 11-43-12,	ВЛ-102	
PCB 18-12, 19-12		
РВП 72-3122,	ВЛ-54,	
PKB 11-33-21,	ВЛ-75А,	
PKB 11-43-21,	ВЛ-75М,	
PCB 19-31	ВЛ-161	
PBT 1200	BC-43	
РПВ 01	DII 100	
РПВ 58, 69Т	ВЛ-108	
РРВП-1	РВЦ-03	
РЕЛЕ НАПРЯЖЕНИЯ		

Заменяемое реле	<i>PEΛCiC</i> ®
PCB 01-1	ВЛ-68, ВЛ-
1 CB 01-1	76M
PCB 01-3	ВЛ-81, ВС-43
PCB 01-4	ВЛ-76М
PCB 01-5	ВЛ-65
PCB 13	ВЛ-104
PCB 14	ВЛ-101А
	ВЛ-64, ВЛ-66,
PCB 15-1, PCB 15M-1	ВЛ-68, ВЛ-69,
PCB 16-1, PCB 16M-1	ВЛ-161, ВЛ-162
	DJI-101, DJI-102
PCB 15-2, PCB 15M-2	ВЛ-73А, ВЛ-
PCB 16-2, PCB 16M-2	73М, ВЛ-102
DCD 15 2	ВЛ-65, ВЛ-78М,
PCB 15-3	ВЛ-164
PCB 15-4, PCB 15M-4	
PCB 16-4, PCB 16M-4	ВЛ-67
PCB 15-5	ВЛ-75М
DCD 16.2	ВЛ-59, ВЛ-
PCB 16-3	159M
PCB 17-3	ВЛ-81
PCB 17-4	BC-43-3
PCB 18-13	ВЛ-100А
PCB 18-23, PCB 19	ВЛ-101А
·	ВЛ-65, ВЛ-
PCB 160	78A,
PCB 100	ВЛ-78М, ВЛ-
	164
PCB 260	ВЛ-100А
PCB 255	ВЛ-101А
ТПТ	ВЛ-159

Заменяемое релеPEACIC®PCH 12НЛ-8, НЛ-18-1PCH 14, PCH 15,
PCH 50-2НЛ-4

НЛ-5

PCH 16, PCH 17,

PH-58

C	
3-1	

PEΛCiC®
НЛ-6, НЛ-6А,
НЛ-8, НЛ-18-
1,
НЛ-19

Заменяемое реле	PEACiC®
PH 54, PH 154,	
PCH 18,	НЛ-7, НЛ-7А,
PCH 50-4, PCH 50-7,	НЛ-8, НЛ-18-2
ЭН 528, ЭН 529	
РН 54 и РВ 03	ВЛ-103А

промежуточные реле

Заменяемое реле	PEΛCiC [®]
ПЭ 6, ПЭ-36, ПЭ-37	РЭП-20
РП 8, РП 9 РП 11, РП 12	ПЭ-46
МКУ 48, ПЭ-21 РПУ2-36 РП 16-1	ПЭ-40
РП 16-2, -3, -4	ПЭ-42
РП 16-5, 7	ПЭ-40
РП 17-1	ПЭ-41
РП 17-2, -3	ПЭ-43

PRJIE	КОНТРОЛЯ	MA3
LUIL	1101111101111	- II

Заменяемое реле	PEΛCiC®
РОФ-11, -12, -13	ЕЛ-11, -12, -13
ЕЛ-8, ЕЛ-10	ЕЛ-11
PCH-25M	ЕЛ-11
PCH-26M	ЕЛ-12
PCH-27M	ЕЛ-13

Заменяемое реле	PE∧CiC®
РП 17-4, -5	ПЭ-41
РП 18-1, -2, -3	ПЭ-44
РП 18-4, -5, -6, -7	ПЭ-45
РП 18-8, -9, -0	ПЭ-45
РП 20	РЭП-20
РП 21М	РЭП-21
РП 23, РП 25	ПЭ-40
РП 221, 222, 225	ПЭ-41
РП 232, 233, 254	ПЭ-42
РП 232, 233, 254	ПЭ-42

РЕЛЕ ТОКА Заменяемое реле РСТ 11.

Заменяемое реле	PEACIC
PCT 11,	
PCT 13,	АЛ-1
PCT 40-1	
PT3 51	АЛ-4

Заменяемое реле	PE∧CiC®
РП 252	ПЭ-45
РП 255	ПЭ-42
РП 256	ПЭ-45
РП 258	ПЭ-44
РПТ 100	РЭП-20
РЭП 25	ПЭ-40, ПЭ-42
РЭП 36	ПЭ-40, ПЭ-42
РЭП 37	ПЭ-44, ПЭ-45
РЭП 38Д	ПЭ-46
РЭП 96	ПЭ-44, ПЭ-45

РЕЛЕ ЗАЩИТЫ ДВИГАТЕЛЯ

Заменяемое реле	PEACiC®
УЗОТЭ-2У,	
PЭ3Э-6, РЭЗЭ-7,	
РЗД-1, РЗД-3М,	РДЦ-01
РЗДУ,	
УБ3-301, ТК	